Hi, where are you from?

My photo
Presents, a Life with a Plan. My name is Karen Anastasia Placek, I am the author of this Google Blog. This is the story of my journey, a quest to understanding more than myself. The title of my first blog delivered more than a million views!! The title is its work as "The Secret of the Universe is Choice!; know decision" will be the next global slogan. Placed on T-shirts, Jackets, Sweatshirts, it really doesn't matter, 'cause a picture with my slogan is worth more than a thousand words, it's worth??.......Know Conversation!!!

Tuesday, January 23, 2024

The Universe Is Strange!

 

Star Wars

Cantore Arithmetic is able to constant a count as every grain:  Salt.  The salt is to be counted as the actual N.A.S.A. photography of what is white and holds like our moon.  This would be as fixed as our moon so those conditions change and those locations of what represent our moon in color of white are salt and probability of movement is known by N.A.S.A.!

Fuller equated fulcrum so a fulcrum is a pyramid and human beings are sand.  So, this is all word weird and Cantore Arithmetic only has strange.


Ecclesiasticus 1:2

“Who can number the sand of the sea, and the drops of rain, and the days of eternity?” 

King James Version (KJV)



Mark 9:3

“And his raiment became shining, exceeding white as snow; so as no fuller on earth can white them.” 

King James Version (KJV)

Matthew 5:13

Ye are the salt of the earth: but if the salt have lost his savour, wherewith shall it be salted? it is thenceforth good for nothing, but to be cast out, and to be trodden under foot of men.” 

King James Version (KJV)

You searched for

"GRAIN" in the KJV Bible


7 Instances   -   Page 1 of 1   -   Sort by Book Order   -   Feedback

1 Corinthians 15:37chapter context similar meaning copy save
And that which thou sowest, thou sowest not that body that shall be, but bare grain, it may chance of wheat, or of some other grain:


Matthew 13:31chapter context similar meaning copy save
Another parable put he forth unto them, saying, The kingdom of heaven is like to a grain of mustard seed, which a man took, and sowed in his field:


Mark 4:31chapter context similar meaning copy save
It is like a grain of mustard seed, which, when it is sown in the earth, is less than all the seeds that be in the earth:


Amos 9:9chapter context similar meaning copy save
For, lo, I will command, and I will sift the house of Israel among all nations, like as corn is sifted in a sieve, yet shall not the least grain fall upon the earth.


Luke 13:19chapter context similar meaning copy save
It is like a grain of mustard seed, which a man took, and cast into his garden; and it grew, and waxed a great tree; and the fowls of the air lodged in the branches of it.


Luke 17:6chapter context similar meaning copy save
And the Lord said, If ye had faith as a grain of mustard seed, ye might say unto this sycamine tree, Be thou plucked up by the root, and be thou planted in the sea; and it should obey you.


Matthew 17:20chapter context similar meaning copy save
And Jesus said unto them, Because of your unbelief: for verily I say unto you, If ye have faith as a grain of mustard seed, ye shall say unto this mountain, Remove hence to yonder place; and it shall remove; and nothing shall be impossible unto you.

You searched for

"WHITE PEOPLE" in the KJV Bible


1,987 Instances   -   Page 1 of 67   -   Sort by Book Order   -   Feedback

Mark 9:3chapter context similar meaning copy save
And his raiment became shining, exceeding white as snow; so as no fuller on earth can white them.


Revelation 19:14chapter context similar meaning copy save
And the armies which were in heaven followed him upon white horses, clothed in fine linen, white and clean.


Leviticus 13:24chapter context similar meaning copy save
Or if there be any flesh, in the skin whereof there is a hot burning, and the quick flesh that burneth have a white bright spot, somewhat reddish, or white;


Leviticus 13:19chapter context similar meaning copy save
And in the place of the boil there be a white rising, or a bright spot, white, and somewhat reddish, and it be shewed to the priest;


Revelation 1:14chapter context similar meaning copy save
His head and his hairs were white like wool, as white as snow; and his eyes were as a flame of fire;


Genesis 30:37chapter context similar meaning copy save
And Jacob took him rods of green poplar, and of the hazel and chesnut tree; and pilled white strakes in them, and made the white appear which was in the rods.


Leviticus 13:10chapter context similar meaning copy save
And the priest shall see him: and, behold, if the rising be white in the skin, and it have turned the hair white, and there be quick raw flesh in the rising;


Leviticus 13:4chapter context similar meaning copy save
If the bright spot be white in the skin of his flesh, and in sight be not deeper than the skin, and the hair thereof be not turned white; then the priest shall shut up him that hath the plague seven days:


Esther 1:6chapter context similar meaning copy save
Where were white, green, and blue, hangings, fastened with cords of fine linen and purple to silver rings and pillars of marble: the beds were of gold and silver, upon a pavement of red, and blue, and white, and black, marble.


Revelation 7:9chapter context similar meaning copy save
After this I beheld, and, lo, a great multitude, which no man could number, of all nations, and kindreds, and people, and tongues, stood before the throne, and before the Lamb, clothed with white robes, and palms in their hands;


Song of Solomon 5:10chapter context similar meaning copy save
My beloved is white and ruddy, the chiefest among ten thousand.


Psalms 68:14chapter context similar meaning copy save
When the Almighty scattered kings in it, it was white as snow in Salmon.


Job 6:6chapter context similar meaning copy save
Can that which is unsavoury be eaten without salt? or is there any taste in the whiteof an egg?


Acts 1:10chapter context similar meaning copy save
And while they looked stedfastly toward heaven as he went up, behold, two men stood by them in white apparel;


Matthew 28:3chapter context similar meaning copy save
His countenance was like lightning, and his raiment white as snow:


Judges 5:10chapter context similar meaning copy save
Speak, ye that ride on white asses, ye that sit in judgment, and walk by the way.


Matthew 5:36chapter context similar meaning copy save
Neither shalt thou swear by thy head, because thou canst not make one hair whiteor black.


Leviticus 13:38chapter context similar meaning copy save
If a man also or a woman have in the skin of their flesh bright spots, even whitebright spots;


Leviticus 13:16chapter context similar meaning copy save
Or if the raw flesh turn again, and be changed unto white, he shall come unto the priest;


Genesis 49:12chapter context similar meaning copy save
His eyes shall be red with wine, and his teeth white with milk.


Ecclesiastes 9:8chapter context similar meaning copy save
Let thy garments be always white; and let thy head lack no ointment.


Revelation 3:4chapter context similar meaning copy save
Thou hast a few names even in Sardis which have not defiled their garments; and they shall walk with me in white: for they are worthy.


Revelation 7:13chapter context similar meaning copy save
And one of the elders answered, saying unto me, What are these which are arrayed in white robes? and whence came they?


Genesis 40:16chapter context similar meaning copy save
When the chief baker saw that the interpretation was good, he said unto Joseph, I also was in my dream, and, behold, I had three white baskets on my head:


2 Kings 5:27chapter context similar meaning copy save
The leprosy therefore of Naaman shall cleave unto thee, and unto thy seed for ever. And he went out from his presence a leper as white as snow.


Revelation 19:11chapter context similar meaning copy save
And I saw heaven opened, and behold a white horse; and he that sat upon him was called Faithful and True, and in righteousness he doth judge and make war.


Joel 1:7chapter context similar meaning copy save
He hath laid my vine waste, and barked my fig tree: he hath made it clean bare, and cast it away; the branches thereof are made white.


Mark 16:5chapter context similar meaning copy save
And entering into the sepulchre, they saw a young man sitting on the right side, clothed in a long white garment; and they were affrighted.


Leviticus 13:39chapter context similar meaning copy save
Then the priest shall look: and, behold, if the bright spots in the skin of their flesh be darkish white; it is a freckled spot that groweth in the skin; he is clean.


John 20:12chapter context similar meaning copy save
And seeth two angels in white sitting, the one at the head, and the other at the feet, where the body of Jesus had lain.


 


This is page: 1 of 67
Select a Page:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 5657 58 59 60 61 62 63 64 65 66 67   Next >

You searched for

"STRANGE" in the KJV Bible


73 Instances   -   Page 1 of 3   -   Sort by Book Order   -   Feedback

Psalms 81:9chapter context similar meaning copy save
There shall no strange god be in thee; neither shalt thou worship any strange god.


1 Peter 4:12chapter context similar meaning copy save
Beloved, think it not strange concerning the fiery trial which is to try you, as though some strange thing happened unto you:


Isaiah 28:21chapter context similar meaning copy save
For the LORD shall rise up as in mount Perazim, he shall be wroth as in the valley of Gibeon, that he may do his work, his strange work; and bring to pass his act, his strange act.


Psalms 137:4chapter context similar meaning copy save
How shall we sing the LORD'S song in a strange land?


Proverbs 23:27chapter context similar meaning copy save
For a whore is a deep ditch; and a strange woman is a narrow pit.


Job 19:3chapter context similar meaning copy save
These ten times have ye reproached me: ye are not ashamed that ye make yourselves strange to me.


Job 19:17chapter context similar meaning copy save
My breath is strange to my wife, though I intreated for the children's sake of mine own body.


Psalms 114:1chapter context similar meaning copy save
When Israel went out of Egypt, the house of Jacob from a people of strangelanguage;


Proverbs 5:3chapter context similar meaning copy save
For the lips of a strange woman drop as an honeycomb, and her mouth is smoother than oil:


Hosea 8:12chapter context similar meaning copy save
I have written to him the great things of my law, but they were counted as a strangething.


Ezekiel 3:5chapter context similar meaning copy save
For thou art not sent to a people of a strange speech and of an hard language, but to the house of Israel;


1 Peter 4:4chapter context similar meaning copy save
Wherein they think it strange that ye run not with them to the same excess of riot, speaking evil of you:


Nehemiah 13:27chapter context similar meaning copy save
Shall we then hearken unto you to do all this great evil, to transgress against our God in marrying strange wives?


Job 31:3chapter context similar meaning copy save
Is not destruction to the wicked? and a strange punishment to the workers of iniquity?


Numbers 26:61chapter context similar meaning copy save
And Nadab and Abihu died, when they offered strange fire before the LORD.


Proverbs 22:14chapter context similar meaning copy save
The mouth of strange women is a deep pit: he that is abhorred of the LORD shall fall therein.


Proverbs 21:8chapter context similar meaning copy save
The way of man is froward and strange: but as for the pure, his work is right.


Deuteronomy 32:12chapter context similar meaning copy save
So the LORD alone did lead him, and there was no strange god with him.


Proverbs 5:20chapter context similar meaning copy save
And why wilt thou, my son, be ravished with a strange woman, and embrace the bosom of a stranger?


Acts 17:20chapter context similar meaning copy save
For thou bringest certain strange things to our ears: we would know therefore what these things mean.


1 Kings 11:8chapter context similar meaning copy save
And likewise did he for all his strange wives, which burnt incense and sacrificed unto their gods.


Exodus 2:22chapter context similar meaning copy save
And she bare him a son, and he called his name Gershom: for he said, I have been a stranger in a strange land.


Exodus 18:3chapter context similar meaning copy save
And her two sons; of which the name of the one was Gershom; for he said, I have been an alien in a strange land:


Proverbs 23:33chapter context similar meaning copy save
Thine eyes shall behold strange women, and thine heart shall utter perverse things.


Proverbs 27:13chapter context similar meaning copy save
Take his garment that is surety for a stranger, and take a pledge of him for a strangewoman.


Proverbs 20:16chapter context similar meaning copy save
Take his garment that is surety for a stranger: and take a pledge of him for a strange woman.


Psalms 44:20chapter context similar meaning copy save
If we have forgotten the name of our God, or stretched out our hands to a strangegod;


Proverbs 2:16chapter context similar meaning copy save
To deliver thee from the strange woman, even from the stranger which flattereth with her words;


Jeremiah 2:21chapter context similar meaning copy save
Yet I had planted thee a noble vine, wholly a right seed: how then art thou turned into the degenerate plant of a strange vine unto me?


Joshua 24:23chapter context similar meaning copy save
Now therefore put away, said he, the strange gods which are among you, and incline your heart unto the LORD God of Israel.


 


This is page: 1 of 3
Select a Page:

2 3   Next >


Universe

This is a good article. Click here for more information.
Page semi-protected
Listen to this article
From Wikipedia, the free encyclopedia
Universe
The Hubble Ultra-Deep Field image shows some of the most remote galaxies visible to present technology (diagonal is ~1/10 apparent Moon diameter)[1]
Age (within ΛCDM model)13.787 ± 0.020 billion years[2]
DiameterUnknown.[3] Observable universe8.8×1026 m (28.5 Gpc or 93 Gly)[4]
Mass (ordinary matter)At least 1053 kg[5]
Average density (with energy)9.9×10−27 kg/m3[6]
Average temperature2.72548 K (−270.4 °C−454.8 °F)[7]
Main contentsOrdinary (baryonic) matter (4.9%)
Dark matter (26.8%)
Dark energy (68.3%)[8]
ShapeFlat with 4‰ error margin[9]

The universe is all of space and time[a] and their contents.[10] It comprises all of existence, any fundamental interactionphysical process and physical constant, and therefore all forms of energyand matter, and the structures they form, from sub-atomic particles to entire galaxies. Space and time, according to the prevailing cosmological theory of the Big Bang, emerged together 13.787±0.020 billion years ago,[11] and the universe has been expanding ever since. Today the universe has expanded into an age and size that is physically only in parts observable as the observable universe, which is approximately 93 billion light-years in diameter at the present day, while the spatial size, if any, of the entire universe is unknown.[3]

Some of the earliest cosmological models of the universe were developed by ancient Greek and Indian philosophers and were geocentric, placing Earth at the center.[12][13] Over the centuries, more precise astronomical observations led Nicolaus Copernicus to develop the heliocentric model with the Sun at the center of the Solar System. In developing the law of universal gravitationIsaac Newton built upon Copernicus's work as well as Johannes Kepler's laws of planetary motion and observations by Tycho Brahe.

Further observational improvements led to the realization that the Sun is one of a few hundred billion stars in the Milky Way, which is one of a few hundred billion galaxies in the observable universe. Many of the stars in a galaxy have planetsAt the largest scale, galaxies are distributed uniformly and the same in all directions, meaning that the universe has neither an edge nor a center. At smaller scales, galaxies are distributed in clusters and superclusters which form immense filaments and voids in space, creating a vast foam-like structure.[14] Discoveries in the early 20th century have suggested that the universe had a beginning and has been expanding since then.[15]

According to the Big Bang theory, the energy and matter initially present have become less dense as the universe expanded. After an initial accelerated expansion called the inflationary epoch at around 10−32 seconds, and the separation of the four known fundamental forces, the universe gradually cooled and continued to expand, allowing the first subatomic particles and simple atoms to form. Dark matter gradually gathered, forming a foam-like structure of filaments and voids under the influence of gravity. Giant clouds of hydrogen and helium were gradually drawn to the places where dark matter was most dense, forming the first galaxies, stars, and everything else seen today.

From studying the movement of galaxies, it has been discovered that the universe contains much more matter than is accounted for by visible objects; stars, galaxies, nebulas and interstellar gas. This unseen matter is known as dark matter[16] (dark means that there is a wide range of strong indirect evidence that it exists, but we have not yet detected it directly). The ΛCDM model is the most widely accepted model of the universe. It suggests that about 69.2%±1.2% of the mass and energy in the universe is dark energy which is responsible for the acceleration of the expansion of the universe, and about 25.8%±1.1% is dark matter.[17]Ordinary ('baryonic') matter is therefore only 4.84%±0.1% of the physical universe.[17] Stars, planets, and visible gas clouds only form about 6% of the ordinary matter.[18]

There are many competing hypotheses about the ultimate fate of the universe and about what, if anything, preceded the Big Bang, while other physicists and philosophers refuse to speculate, doubting that information about prior states will ever be accessible. Some physicists have suggested various multiverse hypotheses, in which the universe might be one among many.[3][19][20]

Definition

Duration: 50 seconds.
Hubble Space Telescope – Ultra deep field galaxiesto Legacy field zoom out
(video 00:50; May 2, 2019)

The physical universe is defined as all of space and time[a] (collectively referred to as spacetime) and their contents.[10] Such contents comprise all of energy in its various forms, including electromagnetic radiationand matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space.[21][22][23]The universe also includes the physical laws that influence energy and matter, such as conservation lawsclassical mechanics, and relativity.[24]

The universe is often defined as "the totality of existence", or everything that exists, everything that has existed, and everything that will exist.[24] In fact, some philosophers and scientists support the inclusion of ideas and abstract concepts—such as mathematics and logic—in the definition of the universe.[26][27][28]The word universe may also refer to concepts such as the cosmosthe world, and nature.[29][30]

Etymology

The word universe derives from the Old French word univers, which in turn derives from the Latin word universus, meaning 'combined into one'.[31] The Latin word 'universum' was used by Cicero and later Latin authors in many of the same senses as the modern English word is used.[32]

Synonyms

A term for universe among the ancient Greek philosophers from Pythagoras onwards was τὸ πᾶν(tò pân) 'the all', defined as all matter and all space, and τὸ ὅλον (tò hólon) 'all things', which did not necessarily include the void.[33][34] Another synonym was ὁ κόσμος (ho kósmos) meaning 'the world, the cosmos'.[35] Synonyms are also found in Latin authors (totummundusnatura)[36] and survive in modern languages, e.g., the German words Das AllWeltall, and Natur for universe. The same synonyms are found in English, such as everything (as in the theory of everything), the cosmos (as in cosmology), the world (as in the many-worlds interpretation), and nature (as in natural laws or natural philosophy).[37]

Chronology and the Big Bang

The prevailing model for the evolution of the universe is the Big Bang theory.[38][39] The Big Bang model states that the earliest state of the universe was an extremely hot and dense one, and that the universe subsequently expanded and cooled. The model is based on general relativity and on simplifying assumptions such as the homogeneity and isotropy of space. A version of the model with a cosmological constant (Lambda) and cold dark matter, known as the Lambda-CDM model, is the simplest model that provides a reasonably good account of various observations about the universe. The Big Bang model accounts for observations such as the correlation of distance and redshift of galaxies, the ratio of the number of hydrogen to helium atoms, and the microwave radiation background.

In this schematic diagram, time passes from left to right, with the universe represented by a disk-shaped "slice" at any given time. Time and size are not to scale. To make the early stages visible, the time to the afterglow stage (really the first 0.003%) is stretched and the subsequent expansion (really by 1,100 times to the present) is largely suppressed.

The initial hot, dense state is called the Planck epoch, a brief period extending from time zero to one Planck time unit of approximately 10−43 seconds. During the Planck epoch, all types of matter and all types of energy were concentrated into a dense state, and gravity—currently the weakest by far of the four known forces—is believed to have been as strong as the other fundamental forces, and all the forces may have been unified. The physics controlling this very early period (including quantum gravity in the Planck epoch) is not understood, so we cannot say what, if anything, happened before time zero. Since the Planck epoch, the universe has been expanding to its present scale, with a very short but intense period of cosmic inflation speculated to have occurred within the first 10−32 seconds.[40] This initial period of inflation would explain why space appears to be very flat, and is uniform on scales much larger than light could otherwise travel since the start of the universe.

Within the first fraction of a second of the universe's existence, the four fundamental forces had separated. As the universe continued to cool from its inconceivably hot state, various types of subatomic particles were able to form in short periods of time known as the quark epoch, the hadron epoch, and the lepton epoch. Together, these epochs encompassed less than 10 seconds of time following the Big Bang. These elementary particles associated stably into ever larger combinations, including stable protons and neutrons, which then formed more complex atomic nuclei through nuclear fusion.[41][42]

This process, known as Big Bang nucleosynthesis, lasted for about 17 minutes and ended about 20 minutes after the Big Bang, so only the fastest and simplest reactions occurred. About 25% of the protons and all the neutrons in the universe, by mass, were converted to helium, with small amounts of deuterium (a form of hydrogen) and traces of lithium. Any other element was only formed in very tiny quantities. The other 75% of the protons remained unaffected, as hydrogen nuclei.[41][42]: 27–42 

After nucleosynthesis ended, the universe entered a period known as the photon epoch. During this period, the universe was still far too hot for matter to form neutral atoms, so it contained a hot, dense, foggy plasma of negatively charged electrons, neutral neutrinos and positive nuclei. After about 377,000 years, the universe had cooled enough that electrons and nuclei could form the first stable atoms. This is known as recombination for historical reasons; electrons and nuclei were combining for the first time. Unlike plasma, neutral atoms are transparent to many wavelengths of light, so for the first time the universe also became transparent. The photons released ("decoupled") when these atoms formed can still be seen today; they form the cosmic microwave background (CMB).[42]: 15–27 

As the universe expands, the energy density of electromagnetic radiation decreases more quickly than does that of matter because the energy of each photon decreases as it is cosmologically redshifted. At around 47,000 years, the energy density of matter became larger than that of photons and neutrinos, and began to dominate the large scale behavior of the universe. This marked the end of the radiation-dominated era and the start of the matter-dominated era.[43]: 390 

In the earliest stages of the universe, tiny fluctuations within the universe's density led to concentrations of dark matter gradually forming. Ordinary matter, attracted to these by gravity, formed large gas clouds and eventually, stars and galaxies, where the dark matter was most dense, and voidswhere it was least dense. After around 100–300 million years,[43]: 333  the first stars formed, known as Population III stars. These were probably very massive, luminous, non metallic and short-lived. They were responsible for the gradual reionization of the universe between about 200–500 million years and 1 billion years, and also for seeding the universe with elements heavier than helium, through stellar nucleosynthesis.[44]

The universe also contains a mysterious energy—possibly a scalar field—called dark energy, the density of which does not change over time. After about 9.8 billion years, the universe had expanded sufficiently so that the density of matter was less than the density of dark energy, marking the beginning of the present dark-energy-dominated era.[45] In this era, the expansion of the universe is accelerating due to dark energy.

Physical properties

Of the four fundamental interactionsgravitation is the dominant at astronomical length scales. Gravity's effects are cumulative; by contrast, the effects of positive and negative charges tend to cancel one another, making electromagnetism relatively insignificant on astronomical length scales. The remaining two interactions, the weak and strong nuclear forces, decline very rapidly with distance; their effects are confined mainly to sub-atomic length scales.[46]: 1470 

The universe appears to have much more matter than antimatter, an asymmetry possibly related to the CP violation.[47] This imbalance between matter and antimatter is partially responsible for the existence of all matter existing today, since matter and antimatter, if equally produced at the Big Bang, would have completely annihilated each other and left only photons as a result of their interaction.[48] The universe also appears to have neither net momentum nor angular momentum, which absences follow from accepted physical laws if the universe is finite. These laws are Gauss's law and the non-divergence of the stress–energy–momentum pseudotensor.[49]

Size and regions

Television signals broadcast from Earth will never reach the edges of this image.

According to the general theory of relativity, far regions of space may never interact with ours even in the lifetime of the universe due to the finite speed of light and the ongoing expansion of space. For example, radio messages sent from Earth may never reach some regions of space, even if the universe were to exist forever: space may expand faster than light can traverse it.[50]

The spatial region that can be observed with telescopes is called the observable universe, which depends on the location of the observer. The proper distance—the distance as would be measured at a specific time, including the present—between Earth and the edge of the observable universe is 46 billion light-years[51] (14 billion parsecs), making the diameter of the observable universe about 93 billion light-years (28 billion parsecs).[51] The distance the light from the edge of the observable universe has travelled is very close to the age of the universe times the speed of light, 13.8 billion light-years (4.2×109 pc), but this does not represent the distance at any given time because the edge of the observable universe and the Earth have since moved further apart.[52]

For comparison, the diameter of a typical galaxy is 30,000 light-years (9,198 parsecs), and the typical distance between two neighboring galaxies is 3 million light-years (919.8 kiloparsecs).[53] As an example, the Milky Way is roughly 100,000–180,000 light-years in diameter,[54][55] and the nearest sister galaxy to the Milky Way, the Andromeda Galaxy, is located roughly 2.5 million light-years away.[56]

Because humans cannot observe space beyond the edge of the observable universe, it is unknown whether the size of the universe in its totality is finite or infinite.[3][57][58] Estimates suggest that the whole universe, if finite, must be more than 250 times larger than a Hubble sphere.[59] Some disputed[60]estimates for the total size of the universe, if finite, reach as high as  megaparsecs, as implied by a suggested resolution of the No-Boundary Proposal.[61][b]

Age and expansion

Assuming that the Lambda-CDM model is correct, the measurements of the parameters using a variety of techniques by numerous experiments yield a best value of the age of the universe at 13.799 ± 0.021 billion years, as of 2015.[2]

Astronomers have discovered stars in the Milky Way galaxy that are almost 13.6 billion years old.

Over time, the universe and its contents have evolved. For example, the relative population of quasars and galaxies has changed[62] and the universe has expanded. This expansion is inferred from the observation that the light from distant galaxies has been redshifted, which implies that the galaxies are receding from us. Analyses of Type Ia supernovae indicate that the expansion is accelerating.[63][64]

The more matter there is in the universe, the stronger the mutual gravitational pull of the matter. If the universe were too dense then it would re-collapse into a gravitational singularity. However, if the universe contained too little matter then the self-gravity would be too weak for astronomical structures, like galaxies or planets, to form. Since the Big Bang, the universe has expanded monotonicallyPerhaps unsurprisingly, our universe has just the right mass–energy density, equivalent to about 5 protons per cubic metre, which has allowed it to expand for the last 13.8 billion years, giving time to form the universe as observed today.[65][66]

There are dynamical forces acting on the particles in the universe which affect the expansion rate. Before 1998, it was expected that the expansion rate would be decreasing as time went on due to the influence of gravitational interactions in the universe; and thus there is an additional observable quantity in the universe called the deceleration parameter, which most cosmologists expected to be positive and related to the matter density of the universe. In 1998, the deceleration parameter was measured by two different groups to be negative, approximately −0.55, which technically implies that the second derivative of the cosmic scale factor  has been positive in the last 5–6 billion years.[67][68]

Spacetime

Modern physics regards events as being organized into spacetime.[69] This idea originated with the special theory of relativity, which predicts that if one observer sees two events happening in different places at the same time, a second observer who is moving relative to the first will see those events happening at different times.[70]: 45–52  The two observers will disagree on the time  between the events, and they will disagree about the distance separating the events, but they will agree on the speed of light , and they will measure the same value for the combination .[70]: 80  The square root of the absolute value of this quantity is called the interval between the two events. The interval expresses how widely separated events are, not just in space or in time, but in the combined setting of spacetime.[70]: 84, 136 [71]

The special theory of relativity cannot account for gravity. Its successor, the general theory of relativity, explains gravity by recognizing that spacetime is not fixed but instead dynamical. In general relativity, gravitational force is reimagined as curvature of spacetime. A curved path like an orbit is not the result of a force deflecting a body from an ideal straight-line path, but rather the body's attempt to fall freely through a background that is itself curved by the presence of other masses. A remark by John Archibald Wheeler that has become proverbial among physicists summarizes the theory: "Spacetime tells matter how to move; matter tells spacetime how to curve",[72][73] and therefore there is no point in considering one without the other.[15] The Newtonian theory of gravity is a good approximation to the predictions of general relativity when gravitational effects are weak and objects are moving slowly compared to the speed of light.[74]: 327 [75]

The relation between matter distribution and spacetime curvature is given by the Einstein field equations, which require tensor calculus to express.[76]: 43 [77] The solutions to these equations include not only the spacetime of special relativity, Minkowski spacetime, but also Schwarzschild spacetimes, which describe black holesFLRW spacetime, which describes an expanding universe; and more.

The universe appears to be a smooth spacetime continuum consisting of three spatial dimensions and one temporal (time) dimension. Therefore, an event in the spacetime of the physical universe can therefore be identified by a set of four coordinates: (xyzt). On average, space is observed to be very nearly flat (with a curvature close to zero), meaning that Euclidean geometry is empirically true with high accuracy throughout most of the universe.[78] Spacetime also appears to have a simply connected topology, in analogy with a sphere, at least on the length scale of the observable universe. However, present observations cannot exclude the possibilities that the universe has more dimensions (which is postulated by theories such as the string theory) and that its spacetime may have a multiply connected global topology, in analogy with the cylindrical or toroidal topologies of two-dimensional spaces.[79][80]

Shape

The three possible options for the shape of the universe

General relativity describes how spacetime is curved and bent by mass and energy (gravity). The topology or geometry of the universe includes both local geometry in the observable universe and global geometry. Cosmologists often work with a given space-like slice of spacetime called the comoving coordinates. The section of spacetime which can be observed is the backward light cone, which delimits the cosmological horizon. The cosmological horizon, also called the particle horizon or the light horizon, is the maximum distance from which particles can have traveled to the observer in the age of the universe. This horizon represents the boundary between the observable and the unobservable regions of the universe.[81][82] The existence, properties, and significance of a cosmological horizon depend on the particular cosmological model.

An important parameter determining the future evolution of the universe theory is the density parameter, Omega (Ω), defined as the average matter density of the universe divided by a critical value of that density. This selects one of three possible geometries depending on whether Ω is equal to, less than, or greater than 1. These are called, respectively, the flat, open and closed universes.[83]

Observations, including the Cosmic Background Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP), and Planck maps of the CMB, suggest that the universe is infinite in extent with a finite age, as described by the Friedmann–Lemaître–Robertson–Walker (FLRW) models.[84][79][85][86]These FLRW models thus support inflationary models and the standard model of cosmology, describing a flat, homogeneous universe presently dominated by dark matter and dark energy.[87][88]

Support of life

The fine-tuned universe hypothesis is the proposition that the conditions that allow the existence of observable life in the universe can only occur when certain universal fundamental physical constants lie within a very narrow range of values. According to this hypothesis, if any of several fundamental constants were only slightly different, the universe would have been unlikely to be conducive to the establishment and development of matter, astronomical structures, elemental diversity, or life as it is understood. Whether this is true, and whether that question is even logically meaningful to ask, are subjects of much debate.[89] The proposition is discussed among philosophersscientiststheologians, and proponents of creationism.[90]

Composition

The universe is composed almost completely of dark energy, dark matter, and ordinary matter. Other contents are electromagnetic radiation (estimated to constitute from 0.005% to close to 0.01% of the total mass–energy of the universe) and antimatter.[91][92][93]

The proportions of all types of matter and energy have changed over the history of the universe.[94] The total amount of electromagnetic radiation generated within the universe has decreased by 1/2 in the past 2 billion years.[95][96] Today, ordinary matter, which includes atoms, stars, galaxies, and life, accounts for only 4.9% of the contents of the universe.[8] The present overall density of this type of matter is very low, roughly 4.5 × 10−31 grams per cubic centimetre, corresponding to a density of the order of only one proton for every four cubic metres of volume.[6] The nature of both dark energy and dark matter is unknown. Dark matter, a mysterious form of matter that has not yet been identified, accounts for 26.8% of the cosmic contents. Dark energy, which is the energy of empty space and is causing the expansion of the universe to accelerate, accounts for the remaining 68.3% of the contents.[8][97][98]

The formation of clusters and large-scale filaments in the cold dark matter model with dark energy. The frames show the evolution of structures in a 43 million parsecs (or 140 million light-years) box from redshift of 30 to the present epoch (upper left z=30 to lower right z=0).
A map of the superclusters and voids nearest to Earth

Matter, dark matter, and dark energy are distributed homogeneously throughout the universe over length scales longer than 300 million light-years (ly) or so.[99] However, over shorter length-scales, matter tends to clump hierarchically; many atoms are condensed into stars, most stars into galaxies, most galaxies into clusters, superclusters and, finally, large-scale galactic filaments. The observable universe contains as many as an estimated 2 trillion galaxies[100][101][102] and, overall, as many as an estimated 1024 stars[103][104] – more stars (and earth-like planets) than all the grains of beach sand on planet Earth;[105][106][107] but less than the total number of atoms estimated in the universe as 1082;[108] and the estimated total number of stars in an inflationary universe (observed and unobserved), as 10100.[109]Typical galaxies range from dwarfs with as few as ten million[110] (107) stars up to giants with one trillion[111] (1012) stars. Between the larger structures are voids, which are typically 10–150 Mpc (33 million–490 million ly) in diameter. The Milky Way is in the Local Group of galaxies, which in turn is in the Laniakea Supercluster.[112] This supercluster spans over 500 million light-years, while the Local Group spans over 10 million light-years.[113] The universe also has vast regions of relative emptiness; the largest known void measures 1.8 billion ly (550 Mpc) across.[114]

Comparison of the contents of the universe today to 380,000 years after the Big Bang as measured with 5 year WMAP data (from 2008).[115] Due to rounding errors, the sum of these numbers is not 100%. This reflects the 2008 limits of WMAP's ability to define dark matter and dark energy.

The observable universe is isotropic on scales significantly larger than superclusters, meaning that the statistical properties of the universe are the same in all directions as observed from Earth. The universe is bathed in highly isotropic microwave radiation that corresponds to a thermal equilibriumblackbody spectrum of roughly 2.72548 kelvins.[7] The hypothesis that the large-scale universe is homogeneous and isotropic is known as the cosmological principle.[116] A universe that is both homogeneous and isotropic looks the same from all vantage points[117] and has no center.[118]

Dark energy

An explanation for why the expansion of the universe is accelerating remains elusive. It is often attributed to "dark energy", an unknown form of energy that is hypothesized to permeate space.[119] On a mass–energy equivalence basis, the density of dark energy (~ 7 × 10−30 g/cm3) is much less than the density of ordinary matter or dark matter within galaxies. However, in the present dark-energy era, it dominates the mass–energy of the universe because it is uniform across space.[120][121]

Two proposed forms for dark energy are the cosmological constant, a constant energy density filling space homogeneously,[122] and scalar fields such as quintessence or modulidynamicquantities whose energy density can vary in time and space. Contributions from scalar fields that are constant in space are usually also included in the cosmological constant. The cosmological constant can be formulated to be equivalent to vacuum energy. Scalar fields having only a slight amount of spatial inhomogeneity would be difficult to distinguish from a cosmological constant.

Dark matter

Dark matter is a hypothetical kind of matter that is invisible to the entire electromagnetic spectrum, but which accounts for most of the matter in the universe. The existence and properties of dark matter are inferred from its gravitational effects on visible matter, radiation, and the large-scale structure of the universe. Other than neutrinos, a form of hot dark matter, dark matter has not been detected directly, making it one of the greatest mysteries in modern astrophysics. Dark matter neither emits nor absorbs light or any other electromagnetic radiation at any significant level. Dark matter is estimated to constitute 26.8% of the total mass–energy and 84.5% of the total matter in the universe.[97][123]

Ordinary matter

The remaining 4.9% of the mass–energy of the universe is ordinary matter, that is, atomsionselectrons and the objects they form. This matter includes stars, which produce nearly all of the light we see from galaxies, as well as interstellar gas in the interstellar and intergalactic media, planets, and all the objects from everyday life that we can bump into, touch or squeeze.[124] The great majority of ordinary matter in the universe is unseen, since visible stars and gas inside galaxies and clusters account for less than 10 per cent of the ordinary matter contribution to the mass–energy density of the universe.[125][126][127]

Ordinary matter commonly exists in four states (or phases): solidliquidgas, and plasma.[128] However, advances in experimental techniques have revealed other previously theoretical phases, such as Bose–Einstein condensates and fermionic condensates.[129][130]

Ordinary matter is composed of two types of elementary particlesquarks and leptons.[131] For example, the proton is formed of two up quarks and one down quark; the neutron is formed of two down quarks and one up quark; and the electron is a kind of lepton. An atom consists of an atomic nucleus, made up of protons and neutrons (both of which are baryons), and electrons that orbit the nucleus.[46]: 1476  Because most of the mass of an atom is concentrated in its nucleus, which is made up of baryons, astronomers often use the term baryonic matter to describe ordinary matter, although a small fraction of this "baryonic matter" is electrons.

Soon after the Big Bang, primordial protons and neutrons formed from the quark–gluon plasma of the early universe as it cooled below two trillion degrees. A few minutes later, in a process known as Big Bang nucleosynthesis, nuclei formed from the primordial protons and neutrons. This nucleosynthesis formed lighter elements, those with small atomic numbers up to lithium and beryllium, but the abundance of heavier elements dropped off sharply with increasing atomic number. Some boron may have been formed at this time, but the next heavier element, carbon, was not formed in significant amounts. Big Bang nucleosynthesis shut down after about 20 minutes due to the rapid drop in temperature and density of the expanding universe. Subsequent formation of heavier elements resulted from stellar nucleosynthesis and supernova nucleosynthesis.[132]

Particles

A four-by-four table of particles. Columns are three generations of matter (fermions) and one of forces (bosons). In the first three columns, two rows contain quarks and two leptons. The top two rows' columns contain up (u) and down (d) quarks, charm (c) and strange (s) quarks, top (t) and bottom (b) quarks, and photon (γ) and gluon (g), respectively. The bottom two rows' columns contain electron neutrino (ν sub e) and electron (e), muon neutrino (ν sub μ) and muon (μ), and tau neutrino (ν sub τ) and tau (τ), and Z sup 0 and W sup ± weak force. Mass, charge, and spin are listed for each particle.
Standard model of elementary particles: the 12 fundamental fermions and 4 fundamental bosons. Brown loops indicate which bosons (red) couple to which fermions (purple and green). Columns are three generations of matter (fermions) and one of forces (bosons). In the first three columns, two rows contain quarks and two leptons. The top two rows' columns contain up (u) and down (d) quarks, charm (c) and strange (s) quarks, top (t) and bottom (b) quarks, and photon (γ) and gluon (g), respectively. The bottom two rows' columns contain electron neutrino (νe) and electron (e), muon neutrino (νμ) and muon (μ), tau neutrino (ντ) and tau (τ), and the Z0 and W± carriers of the weak force. Mass, charge, and spin are listed for each particle.

Ordinary matter and the forces that act on matter can be described in terms of elementary particles.[133] These particles are sometimes described as being fundamental, since they have an unknown substructure, and it is unknown whether or not they are composed of smaller and even more fundamental particles.[134][135] In most contemporary models they are thought of as points in space.[136] All elementary particles are currently best explained by quantum mechanics and exhibit wave–particle duality: their behavior has both particle-like and wave-like aspects, with different features dominating under different circumstances.[137]

Of central importance is the Standard Model, a theory that is concerned with electromagnetic interactions and the weak and strongnuclear interactions.[138] The Standard Model is supported by the experimental confirmation of the existence of particles that compose matter: quarks and leptons, and their corresponding "antimatter" duals, as well as the force particles that mediate interactions: the photon, the W and Z bosons, and the gluon.[134] The Standard Model predicted the existence of the recently discovered Higgs boson, a particle that is a manifestation of a field within the universe that can endow particles with mass.[139][140] Because of its success in explaining a wide variety of experimental results, the Standard Model is sometimes regarded as a "theory of almost everything".[138] The Standard Model does not, however, accommodate gravity. A true force–particle "theory of everything" has not been attained.[141]

Hadrons

A hadron is a composite particle made of quarks held together by the strong force. Hadrons are categorized into two families: baryons (such as protons and neutrons) made of three quarks, and mesons (such as pions) made of one quark and one antiquark. Of the hadrons, protons are stable, and neutrons bound within atomic nuclei are stable. Other hadrons are unstable under ordinary conditions and are thus insignificant constituents of the modern universe.[142]: 118–123 

From approximately 10−6 seconds after the Big Bang, during a period known as the hadron epoch, the temperature of the universe had fallen sufficiently to allow quarks to bind together into hadrons, and the mass of the universe was dominated by hadrons. Initially, the temperature was high enough to allow the formation of hadron–anti-hadron pairs, which kept matter and antimatter in thermal equilibrium. However, as the temperature of the universe continued to fall, hadron–anti-hadron pairs were no longer produced. Most of the hadrons and anti-hadrons were then eliminated in particle–antiparticle annihilation reactions, leaving a small residual of hadrons by the time the universe was about one second old.[142]: 244–266 

Leptons

A lepton is an elementaryhalf-integer spin particle that does not undergo strong interactions but is subject to the Pauli exclusion principle; no two leptons of the same species can be in exactly the same state at the same time.[143] Two main classes of leptons exist: charged leptons (also known as the electron-like leptons), and neutral leptons (better known as neutrinos). Electrons are stable and the most common charged lepton in the universe, whereas muons and taus are unstable particles that quickly decay after being produced in high energy collisions, such as those involving cosmic rays or carried out in particle accelerators.[144][145] Charged leptons can combine with other particles to form various composite particles such as atoms and positronium. The electron governs nearly all of chemistry, as it is found in atoms and is directly tied to all chemical properties. Neutrinos rarely interact with anything, and are consequently rarely observed. Neutrinos stream throughout the universe but rarely interact with normal matter.[146]

The lepton epoch was the period in the evolution of the early universe in which the leptons dominated the mass of the universe. It started roughly 1 second after the Big Bang, after the majority of hadrons and anti-hadrons annihilated each other at the end of the hadron epoch. During the lepton epoch the temperature of the universe was still high enough to create lepton–anti-lepton pairs, so leptons and anti-leptons were in thermal equilibrium. Approximately 10 seconds after the Big Bang, the temperature of the universe had fallen to the point where lepton–anti-lepton pairs were no longer created.[147] Most leptons and anti-leptons were then eliminated in annihilation reactions, leaving a small residue of leptons. The mass of the universe was then dominated by photons as it entered the following photon epoch.[148][149]

Photons

A photon is the quantum of light and all other forms of electromagnetic radiation. It is the carrier for the electromagnetic force. The effects of this force are easily observable at the microscopic and at the macroscopic level because the photon has zero rest mass; this allows long distance interactions.[46]: 1470 

The photon epoch started after most leptons and anti-leptons were annihilated at the end of the lepton epoch, about 10 seconds after the Big Bang. Atomic nuclei were created in the process of nucleosynthesis which occurred during the first few minutes of the photon epoch. For the remainder of the photon epoch the universe contained a hot dense plasma of nuclei, electrons and photons. About 380,000 years after the Big Bang, the temperature of the universe fell to the point where nuclei could combine with electrons to create neutral atoms. As a result, photons no longer interacted frequently with matter and the universe became transparent. The highly redshifted photons from this period form the cosmic microwave background. Tiny variations in temperature and density detectable in the CMB were the early "seeds" from which all subsequent structure formation took place.[142]: 244–266 


No comments:

Post a Comment

An Independent Mind, Knot Logic

An Independent Mind, Knot Logic

This Is Parameter

  Cantore Arithmetic is able to claim word categories equated word Citizens[people[Pawn[Subject[fashion]]]] as word shared equated word dise...

Karen A. Placek, aka Karen Placek, K.A.P., KAP

My photo
Presents, a Life with a Plan. My name is Karen Anastasia Placek, I am the author of this Google Blog. This is the story of my journey, a quest to understanding more than myself. The title of my first blog delivered more than a million views!! The title is its work as "The Secret of the Universe is Choice!; know decision" will be the next global slogan. Placed on T-shirts, Jackets, Sweatshirts, it really doesn't matter, 'cause a picture with my slogan is worth more than a thousand words, it's worth??.......Know Conversation!!!

Know Decision of the Public: Popular Posts!!