Einstein-Rosen Bridge:
As a snakeskin in shed
the bridge to the moon is possible with the following study and upon completion
of all auto kinetic of incident to atmosphere the success would indeed be the
first completed wormhole and completed by the U.S.A.!!
The effect:
A rocket shot on the same
path as to push the air passage to the compass of the moon again and again
would in tight and tidy produce the opening and there from produce the hose
effect to direct passage of what I shall call the vacuum.
The atmosphere from our
earth, our land in the U.S.A. would suck towards that rocket passage and the
eventual breakthrough to moon’s ground itself.
This would then be the first air to ground oxygen produced (naturally)
at an environmentally friendly and successful pace of the very first
terraforming act to have the gravity needed for the following environment of
gravity itself on our moon that would wherefrom be ownership in fact by not only first step and addition therefrom, it would be open for business and we in the U.S.A. would have not only the front door, we would have the threshold.
The wormhole would than is
the airplane passage/tunnel that would gain to the actual roadway to
successfully land the moon. The work on
the moon would than increase activity as per the first and second mission as
the work for say CalTrans to build actual roads understanding that the first
road to the moon is in literal, difficult to see and yet the gravity of such an
idea would in process see its own way to its own finish line!!
To the moon!!
The snakeskin of an
inside out backwards effect is the only way to explain currently the vacuum of
the pealing of that space needed to explain that CalTrans is able to build
actual bridges by such method from one end thereby leaving only the
understanding that the hit to the moon would spread as fluid to the out layer
of a balloon. This is a helium effect
that is also to be considered backwards.
The question:
1.) How long would it
take for atmosphere to develop?
2.) Is the height of that
atmosphere important to the height of a man or the height of a building to
successfully be capable to work the surface?
3.) Is it important to
have a control gate to cutoff the tunnel to the moon to prevent more or less
passage of oxygenated atmosphere to arrive or dissipate improving gravity or alleviating
it?
4.) Transport of material
is in detail of wide-body airplanes so does the wormhole needs to be
pre-determined for space trajectory to wider than a rockets girth?
5.) Where would be the
best location in the U.S.A. to fire repeated NASA rockets?
Much consideration about
anyplace other than Florida for such activity is to be clearly held to the
facts. Florida has hurricane activity
and that would produce a moon that would ice up and spin, this would be the end
of the world as we know it. This does
not mean an apocalyptic moment, this means that our atmosphere and possible
gravity would change swinging us to let’s say Australia and Australia to
California. The only know sign to such a
swing would be the flushing of our commode.
These important considerations are worldwide, do we care?
add.'1
Description of the theory of the Einstein-Rosen bridge:
A wormhole (or Einstein–Rosen bridge or Einstein–Rosen wormhole) is a speculative structure linking disparate points in spacetime, and is based on a special solution of the Einstein field equations solved using a Jacobian matrix and determinant.
Wormhole - Wikipedia
Wormhole
Jump to navigation Jump to search
Part of a series of articles about |
General relativity |
---|
Wormholes are consistent with the general theory of relativity, but whether wormholes actually exist remains to be seen. Many scientists postulate wormholes are merely a projection of the 4th dimension, analogous to how a 2D being could experience only part of a 3D object.[1]
A wormhole could connect extremely long distances such as a billion light years or more, short distances such as a few meters, different universes, or different points in time.[2]
Contents
Visualization
Another way to imagine wormholes is to take a sheet of paper and draw two somewhat distant points on one side of the paper. The sheet of paper represents a plane in the spacetime continuum, and the two points represent a distance to be traveled, however theoretically a wormhole could connect these two points by folding that plane so the points are touching. In this way it would be much easier to traverse the distance since the two points are now touching.
Terminology
In 1928, Hermann Weyl proposed a wormhole hypothesis of matter in connection with mass analysis of electromagnetic field energy;[3][4] however, he did not use the term "wormhole" (he spoke of "one-dimensional tubes" instead).[5]American theoretical physicist John Archibald Wheeler (inspired by Weyl's work)[5] coined the term "wormhole" in a 1957 paper co-authored by Charles Misner:[6]
This analysis forces one to consider situations ... where there is a net flux of lines of force, through what topologists would call "a handle" of the multiply-connected space, and what physicists might perhaps be excused for more vividly terming a "wormhole".
— Charles Misner and John Wheeler in Annals of Physics
Modern definitions
Wormholes have been defined both geometrically and topologically.[further explanation needed] From a topological point of view, an intra-universe wormhole (a wormhole between two points in the same universe) is a compact region of spacetime whose boundary is topologically trivial, but whose interior is not simply connected. Formalizing this idea leads to definitions such as the following, taken from Matt Visser's Lorentzian Wormholes (1996).[7][page needed]If a Minkowski spacetime contains a compact region Ω, and if the topology of Ω is of the form Ω ~ R × Σ, where Σ is a three-manifold of the nontrivial topology, whose boundary has topology of the form ∂Σ ~ S2, and if, furthermore, the hypersurfaces Σ are all spacelike, then the region Ω contains a quasipermanent intrauniverse wormhole.Geometrically, wormholes can be described as regions of spacetime that constrain the incremental deformation of closed surfaces. For example, in Enrico Rodrigo's The Physics of Stargates, a wormhole is defined informally as:
a region of spacetime containing a "world tube" (the time evolution of a closed surface) that cannot be continuously deformed (shrunk) to a world line (the time evolution of a point).
Development
Schwarzschild wormholes
The equations of the theory of general relativity have valid solutions that contain wormholes. The first type of wormhole solution discovered was the Schwarzschild wormhole,[8] which would be present in the Schwarzschild metric describing an eternal black hole, but it was found that it would collapse too quickly for anything to cross from one end to the other. Wormholes that could be crossed in both directions, known as traversable wormholes, would be possible only if exotic matter with negative energy density could be used to stabilize them.[9]Schwarzschild wormholes, also known as Einstein–Rosen bridges[8] (named after Albert Einstein and Nathan Rosen),[10] are connections between areas of space that can be modeled as vacuum solutions to the Einstein field equations, and that are now understood to be intrinsic parts of the maximally extended version of the Schwarzschild metric describing an eternal black hole with no charge and no rotation. Here, "maximally extended" refers to the idea that the spacetime should not have any "edges": it should be possible to continue this path arbitrarily far into the particle's future or past for any possible trajectory of a free-falling particle (following a geodesic in the spacetime).
In order to satisfy this requirement, it turns out that in addition to the black hole interior region that particles enter when they fall through the event horizon from the outside, there must be a separate white hole interior region that allows us to extrapolate the trajectories of particles that an outside observer sees rising up away from the event horizon. And just as there are two separate interior regions of the maximally extended spacetime, there are also two separate exterior regions, sometimes called two different "universes", with the second universe allowing us to extrapolate some possible particle trajectories in the two interior regions. This means that the interior black hole region can contain a mix of particles that fell in from either universe (and thus an observer who fell in from one universe might be able to see light that fell in from the other one), and likewise particles from the interior white hole region can escape into either universe. All four regions can be seen in a spacetime diagram that uses Kruskal–Szekeres coordinates.
In this spacetime, it is possible to come up with coordinate systems such that if a hypersurface of constant time (a set of points that all have the same time coordinate, such that every point on the surface has a space-like separation, giving what is called a 'space-like surface') is picked and an "embedding diagram" drawn depicting the curvature of space at that time, the embedding diagram will look like a tube connecting the two exterior regions, known as an "Einstein–Rosen bridge". Note that the Schwarzschild metric describes an idealized black hole that exists eternally from the perspective of external observers; a more realistic black hole that forms at some particular time from a collapsing star would require a different metric. When the infalling stellar matter is added to a diagram of a black hole's history, it removes the part of the diagram corresponding to the white hole interior region, along with the part of the diagram corresponding to the other universe.[11]
The Einstein–Rosen bridge was discovered by Ludwig Flamm in 1916,[12] a few months after Schwarzschild published his solution, and was rediscovered by Albert Einstein and his colleague Nathan Rosen, who published their result in 1935.[10][13] However, in 1962, John Archibald Wheeler and Robert W. Fuller published a paper[14] showing that this type of wormhole is unstable if it connects two parts of the same universe, and that it will pinch off too quickly for light (or any particle moving slower than light) that falls in from one exterior region to make it to the other exterior region.
According to general relativity, the gravitational collapse of a sufficiently compact mass forms a singular Schwarzschild black hole. In the Einstein–Cartan–Sciama–Kibble theory of gravity, however, it forms a regular Einstein–Rosen bridge. This theory extends general relativity by removing a constraint of the symmetry of the affine connection and regarding its antisymmetric part, the torsion tensor, as a dynamical variable. Torsion naturally accounts for the quantum-mechanical, intrinsic angular momentum (spin) of matter. The minimal coupling between torsion and Dirac spinors generates a repulsive spin–spin interaction that is significant in fermionic matter at extremely high densities. Such an interaction prevents the formation of a gravitational singularity.[clarification needed] Instead, the collapsing matter reaches an enormous but finite density and rebounds, forming the other side of the bridge.[15]
Although Schwarzschild wormholes are not traversable in both directions, their existence inspired Kip Thorne to imagine traversable wormholes created by holding the "throat" of a Schwarzschild wormhole open with exotic matter (material that has negative mass/energy).
Other non-traversable wormholes include Lorentzian wormholes (first proposed by John Archibald Wheeler in 1957), wormholes creating a spacetime foam in a general relativistic spacetime manifold depicted by a Lorentzian manifold,[16] and Euclidean wormholes (named after Euclidean manifold, a structure of Riemannian manifold).[17]
Traversable wormholes
The Casimir effect shows that quantum field theory allows the energy density in certain regions of space to be negative relative to the ordinary matter vacuum energy, and it has been shown theoretically that quantum field theory allows states where energy can be arbitrarily negative at a given point.[18] Many physicists, such as Stephen Hawking,[19] Kip Thorne,[20] and others,[21][22][23] argued that such effects might make it possible to stabilize a traversable wormhole.[24][25] The only known natural process that is theoretically predicted to form a wormhole in the context of general relativity and quantum mechanics was put forth by Leonard Susskind in his ER=EPR conjecture. The quantum foam hypothesis is sometimes used to suggest that tiny wormholes might appear and disappear spontaneously at the Planck scale,[26]:494–496[27] and stable versions of such wormholes have been suggested as dark matter candidates.[28][29] It has also been proposed that, if a tiny wormhole held open by a negative mass cosmic string had appeared around the time of the Big Bang, it could have been inflated to macroscopic size by cosmic inflation.[30]Wormholes connect two points in spacetime, which means that they would in principle allow travel in time, as well as in space. In 1988, Morris, Thorne and Yurtsever worked out how to convert a wormhole traversing space into one traversing time by accelerating one of its two mouths.[20] However, according to general relativity, it would not be possible to use a wormhole to travel back to a time earlier than when the wormhole was first converted into a time "machine". Until this time it could not have been noticed or have been used.[26]:504
Raychaudhuri's theorem and exotic matter
To see why exotic matter is required, consider an incoming light front traveling along geodesics, which then crosses the wormhole and re-expands on the other side. The expansion goes from negative to positive. As the wormhole neck is of finite size, we would not expect caustics to develop, at least within the vicinity of the neck. According to the optical Raychaudhuri's theorem, this requires a violation of the averaged null energy condition. Quantum effects such as the Casimir effect cannot violate the averaged null energy condition in any neighborhood of space with zero curvature,[35] but calculations in semiclassical gravity suggest that quantum effects may be able to violate this condition in curved spacetime.[36] Although it was hoped recently that quantum effects could not violate an achronal version of the averaged null energy condition,[37] violations have nevertheless been found,[38] so it remains an open possibility that quantum effects might be used to support a wormhole.Modified general relativity
In some hypotheses where general relativity is modified, it is possible to have a wormhole that does not collapse without having to resort to exotic matter. For example, this is possible with R2 gravity, a form of f(R) gravity.[39]Faster-than-light travel
Time travel
If traversable wormholes exist, they could allow time travel.[20] A proposed time-travel machine using a traversable wormhole would hypothetically work in the following way: One end of the wormhole is accelerated to some significant fraction of the speed of light, perhaps with some advanced propulsion system, and then brought back to the point of origin. Alternatively, another way is to take one entrance of the wormhole and move it to within the gravitational field of an object that has higher gravity than the other entrance, and then return it to a position near the other entrance. For both these methods, time dilation causes the end of the wormhole that has been moved to have aged less, or become "younger", than the stationary end as seen by an external observer; however, time connects differently through the wormhole than outside it, so that synchronized clocks at either end of the wormhole will always remain synchronized as seen by an observer passing through the wormhole, no matter how the two ends move around.[26]:502 This means that an observer entering the "younger" end would exit the "older" end at a time when it was the same age as the "younger" end, effectively going back in time as seen by an observer from the outside. One significant limitation of such a time machine is that it is only possible to go as far back in time as the initial creation of the machine;[26]:503 It is more of a path through time rather than it is a device that itself moves through time, and it would not allow the technology itself to be moved backward in time.[40][41]According to current theories on the nature of wormholes, construction of a traversable wormhole would require the existence of a substance with negative energy, often referred to as "exotic matter". More technically, the wormhole spacetime requires a distribution of energy that violates various energy conditions, such as the null energy condition along with the weak, strong, and dominant energy conditions. However, it is known that quantum effects can lead to small measurable violations of the null energy condition,[7]:101 and many physicists believe that the required negative energy may actually be possible due to the Casimir effect in quantum physics.[42] Although early calculations suggested a very large amount of negative energy would be required, later calculations showed that the amount of negative energy can be made arbitrarily small.[43]
In 1993, Matt Visser argued that the two mouths of a wormhole with such an induced clock difference could not be brought together without inducing quantum field and gravitational effects that would either make the wormhole collapse or the two mouths repel each other,[44] or otherwise prevent information from passing through the wormhole.[45] Because of this, the two mouths could not be brought close enough for causality violation to take place. However, in a 1997 paper, Visser hypothesized that a complex "Roman ring" (named after Tom Roman) configuration of an N number of wormholes arranged in a symmetric polygon could still act as a time machine, although he concludes that this is more likely a flaw in classical quantum gravity theory rather than proof that causality violation is possible.[46]
Interuniversal travel
A possible resolution to the paradoxes resulting from wormhole-enabled time travel rests on the many-worlds interpretation of quantum mechanics.In 1991 David Deutsch showed that quantum theory is fully consistent (in the sense that the so-called density matrix can be made free of discontinuities) in spacetimes with closed timelike curves.[47] However, later it was shown that such model of closed timelike curve can have internal inconsistencies as it will lead to strange phenomena like distinguishing non-orthogonal quantum states and distinguishing proper and improper mixture.[48][49] Accordingly, the destructive positive feedback loop of virtual particles circulating through a wormhole time machine, a result indicated by semi-classical calculations, is averted. A particle returning from the future does not return to its universe of origination but to a parallel universe. This suggests that a wormhole time machine with an exceedingly short time jump is a theoretical bridge between contemporaneous parallel universes.[50]
Because a wormhole time-machine introduces a type of nonlinearity into quantum theory, this sort of communication between parallel universes is consistent with Joseph Polchinski's proposal of an Everett phone[51] (named after Hugh Everett) in Steven Weinberg's formulation of nonlinear quantum mechanics.[52]
The possibility of communication between parallel universes has been dubbed interuniversal travel.[53]
Metrics
Theories of wormhole metrics describe the spacetime geometry of a wormhole and serve as theoretical models for time travel. An example of a (traversable) wormhole metric is the following:[54]first presented by Ellis (see Ellis wormhole) as a special case of the Ellis drainhole.
One type of non-traversable wormhole metric is the Schwarzschild solution (see the first diagram):
The original Einstein–Rosen bridge was described in an article published in July 1935.[55][56]
For the Schwarzschild spherically symmetric static solution
where is the proper time and .
If one replaces with according to
The four-dimensional space is described mathematically by two congruent parts or "sheets", corresponding to and , which are joined by a hyperplane or in which vanishes. We call such a connection between the two sheets a "bridge".For the combined field, gravity and electricity, Einstein and Rosen derived the following Schwarzschild static spherically symmetric solution
— A. Einstein, N. Rosen, "The Particle Problem in the General Theory of Relativity"
where is the electric charge.
The field equations without denominators in the case when can be written
In order to eliminate singularities, if one replaces by according to the equation:
and with one obtains[57][58]
The solution is free from singularities for all finite points in the space of the two sheets
— A. Einstein, N. Rosen, "The Particle Problem in the General Theory of Relativity"
In fiction
Wormholes are a common element in science fiction because they allow interstellar, intergalactic, and sometimes even interuniversal travel within human lifetime scales. In fiction, wormholes have also served as a method for time travel.See also
Notes
References
- DeBenedictis, Andrew & Das, A. (2001). "On a General Class of Wormhole Geometries". Classical and Quantum Gravity. 18 (7): 1187–1204. arXiv:gr-qc/0009072. Bibcode:2001CQGra..18.1187D. CiteSeerX 10.1.1.339.8662. doi:10.1088/0264-9381/18/7/304.
- Dzhunushaliev, Vladimir (2002). "Strings in the Einstein's paradigm of matter". Classical and Quantum Gravity. 19 (19): 4817–4824. arXiv:gr-qc/0205055. Bibcode:2002CQGra..19.4817D. CiteSeerX 10.1.1.339.1518. doi:10.1088/0264-9381/19/19/302.
- Einstein, Albert & Rosen, Nathan (1935). "The Particle Problem in the General Theory of Relativity". Physical Review. 48: 73. Bibcode:1935PhRv...48...73E. doi:10.1103/PhysRev.48.73.
- Fuller, Robert W. & Wheeler, John A. (1962). "Causality and Multiply-Connected Space-Time". Physical Review. 128 (2): 919. Bibcode:1962PhRv..128..919F. doi:10.1103/PhysRev.128.919.
- Garattini, Remo (2004). "How Spacetime Foam modifies the brick wall". Modern Physics Letters A. 19 (36): 2673–2682. arXiv:gr-qc/0409015. Bibcode:2004MPLA...19.2673G. doi:10.1142/S0217732304015658.
- González-Díaz, Pedro F. (1998). "Quantum time machine". Physical Review D. 58 (12): 124011. arXiv:gr-qc/9712033. Bibcode:1998PhRvD..58l4011G. doi:10.1103/PhysRevD.58.124011. hdl:10261/100644.
- González-Díaz, Pedro F. (1996). "Ringholes and closed timelike curves". Physical Review D. 54 (10): 6122–6131. arXiv:gr-qc/9608059. Bibcode:1996PhRvD..54.6122G. doi:10.1103/PhysRevD.54.6122.
- Khatsymosky, Vladimir M. (1997). "Towards possibility of self-maintained vacuum traversable wormhole". Physics Letters B. 399 (3–4): 215–222. arXiv:gr-qc/9612013. Bibcode:1997PhLB..399..215K. doi:10.1016/S0370-2693(97)00290-6.
- Krasnikov, Serguei (2006). "Counter example to a quantum inequality". Gravity and Cosmology. 46 (2006): 195. arXiv:gr-qc/0409007. Bibcode:2006GrCo...12..195K.
- Krasnikov, Serguei (2003). "The quantum inequalities do not forbid spacetime shortcuts". Physical Review D. 67 (10): 104013. arXiv:gr-qc/0207057. Bibcode:2003PhRvD..67j4013K. doi:10.1103/PhysRevD.67.104013.
- Li, Li-Xin (2001). "Two Open Universes Connected by a Wormhole: Exact Solutions". Journal of Geometry and Physics. 40 (2): 154–160. arXiv:hep-th/0102143. Bibcode:2001JGP....40..154L. CiteSeerX 10.1.1.267.8664. doi:10.1016/S0393-0440(01)00028-6.
- Morris, Michael S.; Thorne, Kip S. & Yurtsever, Ulvi (1988). "Wormholes, Time Machines, and the Weak Energy Condition" (PDF). Physical Review Letters. 61 (13): 1446–1449. Bibcode:1988PhRvL..61.1446M. doi:10.1103/PhysRevLett.61.1446. PMID 10038800.
- Morris, Michael S. & Thorne, Kip S. (1988). "Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity". American Journal of Physics. 56 (5): 395–412. Bibcode:1988AmJPh..56..395M. doi:10.1119/1.15620.
- Nandi, Kamal K. & Zhang, Yuan-Zhong (2006). "A Quantum Constraint for the Physical Viability of Classical Traversable Lorentzian Wormholes". Journal of Nonlinear Phenomena in Complex Systems. 9 (2006): 61–67. arXiv:gr-qc/0409053. Bibcode:2004gr.qc.....9053N.
- Ori, Amos (2005). "A new time-machine model with compact vacuum core". Physical Review Letters. 95 (2): 021101. arXiv:gr-qc/0503077. Bibcode:2005PhRvL..95b1101O. doi:10.1103/PhysRevLett.95.021101. PMID 16090670.
- Roman, Thomas A. (2004). Some Thoughts on Energy Conditions and Wormholes. The Tenth Marcel Grossmann Meeting. pp. 1909–1924. arXiv:gr-qc/0409090. doi:10.1142/9789812704030_0236. ISBN 978-981-256-667-6.
- Teo, Edward (1998). "Rotating traversable wormholes". Physical Review D. 58 (2): 024014. arXiv:gr-qc/9803098. Bibcode:1998PhRvD..58b4014T. CiteSeerX 10.1.1.339.966. doi:10.1103/PhysRevD.58.024014.
- Visser, Matt (2002). "The quantum physics of chronology protection by Matt Visser". arXiv:gr-qc/0204022. An excellent and more concise review.
- Visser, Matt (1989). "Traversable wormholes: Some simple examples". Physical Review D. 39 (10): 3182–3184. arXiv:0809.0907. Bibcode:1989PhRvD..39.3182V. doi:10.1103/PhysRevD.39.3182.
External links
Wikimedia Commons has media related to Wormholes. |
- Wormhole (physics) at the Encyclopædia Britannica
- What exactly is a 'wormhole'? Have wormholes been proven to exist or are they still theoretical?? answered by Richard F. Holman, William A. Hiscock and Matt Visser.
- Why wormholes? by Matt Visser. October 1996
- Wormholes in General Relativity by Soshichi Uchii at the Wayback Machine (archived February 22, 2012)
- Questions and Answers about Wormholes a comprehensive wormhole FAQ by Enrico Rodrigo.
- Large Hadron Collider – Theory on how the collider could create a small wormhole, possibly allowing time travel into the past.
- animation that simulates traversing a wormhole
- renderings and animations of a Morris-Thorne wormhole
- N.A.S.A's current theory on wormhole creation
Languages
add.'2
Terraforming
Jump to navigation
Jump to search
The concept of terraforming developed from both science fiction and actual science. The term was coined by Jack Williamson in a science-fiction short story ("Collision Orbit") published during 1942 in Astounding Science Fiction,[1] but the concept may pre-date this work.
Even if the environment of a planet could be altered deliberately, the feasibility of creating an unconstrained planetary environment that mimics Earth on another planet has yet to be verified. Mars is usually considered to be the most likely candidate for terraforming. Much study has been done concerning the possibility of heating the planet and altering its atmosphere, and NASA has even hosted debates on the subject. Several potential methods of altering the climate of Mars may fall within humanity's technological capabilities, but at present the economic resources required to do so are far beyond that which any government or society is willing to allocate to it. The long timescales and practicality of terraforming are the subject of debate. Other unanswered questions relate to the ethics, logistics, economics, politics, and methodology of altering the environment of an extraterrestrial world.
Contents
History of scholarly study
The astronomer Carl Sagan proposed the planetary engineering of Venus in an article published in the journal Science in 1961.[2] Sagan imagined seeding the atmosphere of Venus with algae, which would convert water, nitrogen and carbon dioxide into organic compounds. As this process removed carbon dioxide from the atmosphere, the greenhouse effect would be reduced until surface temperatures dropped to "comfortable" levels. The resulting carbon, Sagan supposed, would be incinerated by the high surface temperatures of Venus, and thus be sequestered in the form of "graphite or some involatile form of carbon" on the planet's surface.[3] However, later discoveries about the conditions on Venus made this particular approach impossible. One problem is that the clouds of Venus are composed of a highly concentrated sulfuric acid solution. Even if atmospheric algae could thrive in the hostile environment of Venus's upper atmosphere, an even more insurmountable problem is that its atmosphere is simply far too thick—the high atmospheric pressure would result in an "atmosphere of nearly pure molecular oxygen" and cause the planet's surface to be thickly covered in fine graphite powder.[3] This volatile combination could not be sustained through time. Any carbon that was fixed in organic form would be liberated as carbon dioxide again through combustion, "short-circuiting" the terraforming process.[3]Sagan also visualized making Mars habitable for human life in "Planetary Engineering on Mars" (1973), an article published in the journal Icarus.[4] Three years later, NASA addressed the issue of planetary engineering officially in a study, but used the term "planetary ecosynthesis" instead.[5] The study concluded that it was possible for Mars to support life and be made into a habitable planet. The first conference session on terraforming, then referred to as "Planetary Modeling", was organized that same year.
In March 1979, NASA engineer and author James Oberg organized the First Terraforming Colloquium, a special session at the Lunar and Planetary Science Conference in Houston. Oberg popularized the terraforming concepts discussed at the colloquium to the general public in his book New Earths (1981).[6] Not until 1982 was the word terraforming used in the title of a published journal article. Planetologist Christopher McKay wrote "Terraforming Mars", a paper for the Journal of the British Interplanetary Society.[7] The paper discussed the prospects of a self-regulating Martian biosphere, and McKay's use of the word has since become the preferred term. In 1984, James Lovelock and Michael Allaby published The Greening of Mars.[8] Lovelock's book was one of the first to describe a novel method of warming Mars, where chlorofluorocarbons (CFCs) are added to the atmosphere.
Motivated by Lovelock's book, biophysicist Robert Haynes worked behind the scenes[citation needed] to promote terraforming, and contributed the neologism Ecopoiesis,[9] forming the word from the Greek οἶκος, oikos, "house",[10] and ποίησις, poiesis, "production".[11] Ecopoiesis refers to the origin of an ecosystem. In the context of space exploration, Haynes describes ecopoiesis as the "fabrication of a sustainable ecosystem on a currently lifeless, sterile planet". Fogg defines ecopoiesis as a type of planetary engineering and is one of the first stages of terraformation. This primary stage of ecosystem creation is usually restricted to the initial seeding of microbial life.[12] A 2019 opinion piece by Lopez, Peixoto and Rosado has reintroduced microbiology as a necessary component of any possible colonization strategy based on the principles of microbial symbiosis and their beneficial ecosystem services.[13] As conditions approach that of Earth, plant life could be brought in, and this will accelerate the production of oxygen, theoretically making the planet eventually able to support animal life.
Aspects and definitions
In 1985, Martyn J. Fogg started publishing several articles on terraforming. He also served as editor for a full issue on terraforming for the Journal of the British Interplanetary Society in 1992. In his book Terraforming: Engineering Planetary Environments (1995), Fogg proposed the following definitions for different aspects related to terraforming:[12]- Planetary engineering: the application of technology for the purpose of influencing the global properties of a planet.
- Geoengineering: planetary engineering applied specifically to Earth. It includes only those macroengineering concepts that deal with the alteration of some global parameter, such as the greenhouse effect, atmospheric composition, insolation or impact flux.
- Terraforming: a process of planetary engineering, specifically directed at enhancing the capacity of an extraterrestrial planetary environment to support life as we know it. The ultimate achievement in terraforming would be to create an open planetary ecosystem emulating all the functions of the biosphere of Earth, one that would be fully habitable for human beings.
- Habitable Planet (HP): A world with an environment sufficiently similar to Earth as to allow comfortable and free human habitation.
- Biocompatible Planet (BP): A planet possessing the necessary physical parameters for life to flourish on its surface. If initially lifeless, then such a world could host a biosphere of considerable complexity without the need for terraforming.
- Easily Terraformable Planet (ETP): A planet that might be rendered biocompatible, or possibly habitable, and maintained so by modest planetary engineering techniques and with the limited resources of a starship or robot precursor mission.
Habitability requirements
An absolute requirement for life is an energy source, but the notion of planetary habitability implies that many other geophysical, geochemical, and astrophysical criteria must be met before the surface of an astronomical body is able to support life. Of particular interest is the set of factors that has sustained complex, multicellular animals in addition to simpler organisms on Earth. Research and theory in this regard is a component of planetary science and the emerging discipline of astrobiology.In its astrobiology roadmap, NASA has defined the principal habitability criteria as "extended regions of liquid water, conditions favorable for the assembly of complex organic molecules, and energy sources to sustain metabolism."[16]
Preliminary stages
Once conditions become more suitable for life of the introduced species, the importation of microbial life could begin.[12] As conditions approach that of Earth, plant life could also be brought in. This would accelerate the production of oxygen, which theoretically would make the planet eventually able to support animal life.Prospective targets
Mars
The exact mechanism of this loss is still unclear, though three mechanisms in particular seem likely: First, whenever surface water is present, carbon dioxide (CO
2) reacts with rocks to form carbonates, thus drawing atmosphere off and binding it to the planetary surface. On Earth, this process is counteracted when plate tectonics works to cause volcanic eruptions that vent carbon dioxide back to the atmosphere. On Mars, the lack of such tectonic activity worked to prevent the recycling of gases locked up in sediments.[20]
Second, the lack of a magnetosphere around Mars may have allowed the solar wind to gradually erode the atmosphere.[20] Convection within the core of Mars, which is made mostly of iron,[21] originally generated a magnetic field. However the dynamo ceased to function long ago,[22] and the magnetic field of Mars has largely disappeared, probably due to "... loss of core heat, solidification of most of the core, and/or changes in the mantle convection regime."[23] Results from the NASA MAVEN mission show that the atmosphere is removed primarily due to Coronal Mass Ejection events, where outbursts of high-velocity protons from the sun impact the atmosphere. Mars does still retain a limited magnetosphere that covers approximately 40% of its surface. Rather than uniformly covering and protecting the atmosphere from solar wind, however, the magnetic field takes the form of a collection of smaller, umbrella-shaped fields, mainly clustered together around the planet's southern hemisphere.[24]
Finally, between approximately 4.1 and 3.8 billion years ago, asteroid impacts during the Late Heavy Bombardment caused significant changes to the surface environment of objects in the Solar System. The low gravity of Mars suggests that these impacts could have ejected much of the Martian atmosphere into deep space.[25]
Terraforming Mars would entail two major interlaced changes: building the atmosphere and heating it.[26] A thicker atmosphere of greenhouse gases such as carbon dioxide would trap incoming solar radiation. Because the raised temperature would add greenhouse gases to the atmosphere, the two processes would augment each other.[27] Carbon dioxide alone would not suffice to sustain a temperature above the freezing point of water, so a mixture of specialized greenhouse molecules might be manufactured.[28]
Venus
The Moon
Earth
It has been recently proposed that due to the effects of Climate change, an interventionist program might be designed to return Earth to its usual and more benign climate parameters. In order to achieve this, multiple solutions have been proposed, such as the management of solar radiation, the sequestration of carbon dioxide using geoengineering methods and the design and release of climate altering genetically engineered organisms.[35][36]Other bodies in the Solar System
Other possible candidates for terraforming (possibly only partial or paraterraforming) include Titan, Callisto, Ganymede, Europa, and even Mercury, Saturn's moon Enceladus, and the dwarf planet Ceres.Other possibilities
Biological terraforming
Many proposals for planetary engineering involve the use of genetically engineered bacteria.[37][38]As synthetic biology matures over the coming decades it may become possible to build designer organisms from scratch that directly manufacture desired products efficiently.[39] Lisa Nip, Ph.D. candidate at the MIT Media Lab's Molecular Machines group, said that by synthetic biology, scientists could genetically engineer humans, plants and bacteria to create Earth-like conditions on another planet.[40][41]
Gary King, microbiologist at Louisiana State University studying the most extreme organisms on Earth, notes that "synthetic biology has given us a remarkable toolkit that can be used to manufacture new kinds of organisms specially suited for the systems we want to plan for" and outlines the prospects for terraforming, saying "we'll want to investigate our chosen microbes, find the genes that code for the survival and terraforming properties that we want (like radiation and drought resistance), and then use that knowledge to genetically engineer specifically Martian-designed microbes". He sees the project's biggest bottleneck in the ability to genetically tweak and tailor the right microbes, estimating that this hurdle could take "a decade or more" to be solved. He also notes that it would be best to develop "not a single kind microbe but a suite of several that work together".[42]
DARPA is researching using photosynthesizing plants, bacteria, and algae grown directly on the Mars surface that could warm up and thicken its atmosphere. In 2015 the agency and some of its research partners have created a software called DTA GView − a 'Google Maps of genomes', in which genomes of several organisms can be pulled up on the program to immediately show a list of known genes and where they are located in the genome. According to Alicia Jackson, deputy director of DARPA's Biological Technologies Office by this they have developed a "technological toolkit to transform not just hostile places here on Earth, but to go into space not just to visit, but to stay".[43][44][45][46]
Paraterraforming
Also known as the "worldhouse" concept, paraterraforming involves the construction of a habitable enclosure on a planet which encompasses most of the planet's usable area.[47] The enclosure would consist of a transparent roof held one or more kilometers above the surface, pressurized with a breathable atmosphere, and anchored with tension towers and cables at regular intervals. The worldhouse concept is similar to the concept of a domed habitat, but one which covers all (or most) of the planet.Adapting humans
It has also been suggested that instead of or in addition to terraforming a hostile environment humans might adapt to these places by the use of genetic engineering, biotechnology and cybernetic enhancements.[48][49][50][51][52]Issues
Ethical issues
There is a philosophical debate within biology and ecology as to whether terraforming other worlds is an ethical endeavor. From the point of view of a cosmocentric ethic, this involves balancing the need for the preservation of human life against the intrinsic value of existing planetary ecologies.[53]On the pro-terraforming side of the argument, there are those like Robert Zubrin, Martyn J. Fogg, Richard L. S. Taylor and the late Carl Sagan who believe that it is humanity's moral obligation to make other worlds suitable for life, as a continuation of the history of life transforming the environments around it on Earth.[54][55] They also point out that Earth would eventually be destroyed if nature takes its course, so that humanity faces a very long-term choice between terraforming other worlds or allowing all terrestrial life to become extinct. Terraforming totally barren planets, it is asserted, is not morally wrong as it does not affect any other life.
The opposing argument posits that terraforming would be an unethical interference in nature, and that given humanity's past treatment of Earth, other planets may be better off without human interference. Still others strike a middle ground, such as Christopher McKay, who argues that terraforming is ethically sound only once we have completely assured that an alien planet does not harbor life of its own; but that if it does, we should not try to reshape it to our own use, but we should engineer its environment to artificially nurture the alien life and help it thrive and co-evolve, or even co-exist with humans.[56] Even this would be seen as a type of terraforming to the strictest of ecocentrists, who would say that all life has the right, in its home biosphere, to evolve without outside interference.
Economic issues
The initial cost of such projects as planetary terraforming would be gargantuan, and the infrastructure of such an enterprise would have to be built from scratch. Such technology is not yet developed, let alone financially feasible at the moment. John Hickman has pointed out that almost none of the current schemes for terraforming incorporate economic strategies, and most of their models and expectations seem highly optimistic.[57]Political issues
National pride, rivalries between nations, and the politics of public relations have in the past been the primary motivations for shaping space projects.[58][59] It is reasonable to assume that these factors would also be present in planetary terraforming efforts.In popular culture
Terraforming is a common concept in science fiction, ranging from television, movies and novels to video games.See also
- Astrobotany
- Climate engineering, also known as Geoengineering
- Colonization of Mars
- Colonization of Venus – Proposed colonization of the planet
- Extraterrestrial liquid water
- Health threat from cosmic rays
- Effect of spaceflight on the human body
- In situ resource utilization – Astronautical use of materials harvested in space
- Pantropy
- Planetary engineering – The application of technology for the purpose of influencing the global environments of a planet megamind
- Planetary habitability – Extent to which a planet is suitable for life as we know it
- Space colonization – Concept of permanent human habitation outside of Earth
- Terraforming of Mars
- Terraforming of Venus
- Desert greening
References
- Thompson 2001 p. 108
Notes
- Averner, M. M.; MacElroy, R. D., eds. (1976). On the Habitability of Mars: An Approach to Planetary Ecosynthesis.
- Dalrymple, G. Brent (2004). Ancient Earth, ancient skies: the age of Earth and its cosmic surroundings. Stanford University Press. ISBN 0-8047-4933-7
- Faure, Gunter & Mensing, Teresa M. (2007). Introduction to planetary science: the geological perspective. Springer. ISBN 1-4020-5233-2.
- Fogg, Martyn J. (1995). Terraforming: Engineering Planetary Environments. SAE International, Warrendale, PA. ISBN 1-56091-609-5.
- Fogg, Martyn J. (1996). "A Planet Dweller's Dream". In Schmidt, Stanley; Zubrin, Robert (eds.). Islands in the Sky. New York: Wiley. pp. 143–67.
- Fogg Martyn J. (2000). The Ethical Dimensions of Space Settlement (PDF format). Space Policy, 16, 205–211. Also presented (1999) at the 50th International Astronautical Congress, Amsterdam (IAA-99-IAA.7.1.07).
- Fogg, Martyn J. (1998). "Terraforming Mars: A Review of Current Research" (PDF). Advances in Space Research. Committee on Space Research. 2 (3): 415–420. Bibcode:1998AdSpR..22..415F. doi:10.1016/S0273-1177(98)00166-5.
- Forget, François; Costard, François & Lognonné, Philippe (2007). Planet Mars: Story of Another World. Springer. ISBN 0-387-48925-8.
- Kargel, Jeffrey Stuart (2004). Mars: a warmer, wetter planet. Springer. ISBN 1-85233-568-8.
- MacNiven, D. (1995). "Environmental Ethics and Planetary Engineering". Journal of the British Interplanetary Society. 48: 441–44.
- Knoll, Andrew H. (2008). "Cyanobacteria and earth history". In Herrero, Antonia; Flores, Enrique (eds.). The cyanobacteria: molecular biology, genomics, and evolution. Horizon Scientific Press. pp. 1–20. ISBN 978-1-904455-15-8.
- McKay Christopher P. & Haynes, Robert H. (1997). Implanting Life on Mars as a Long Term Goal for Mars Exploration, in The Case for Mars IV: Considerations for Sending Humans, ed. Thomas R. Meyer (San Diego, California: American Astronautical Society/Univelt), Pp. 209–15.
- Read, Peter L.; Lewis, Stephen R. (2004). The Martian climate revisited: atmosphere and environment of a desert planet. Springer. ISBN 3-540-40743-X.
- Sagan, Carl & Druyan, Ann (1997). Pale Blue Dot: A Vision of the Human Future in Space. Ballantine Books. ISBN 0-345-37659-5.
- Schubert, Gerald ; Turcotte, Donald L.; Olson, Peter. (2001). Mantle convection in the Earth and planets. Cambridge University Press. ISBN 0-521-79836-1
- Solar wind ripping chunks off Mars. (November 25, 2008) Cosmos Accessed 6/18/2009.
- Taylor, Richard L. S. (1992) Paraterraforming – The worldhouse concept. Journal of the British Interplanetary Society, vol. 45, no. 8, pp. 341–352.ISSN 0007-084X
- Thompson, J. M. T. (2001). Visions of the future: astronomy and Earth science. Cambridge University Press. ISBN 0-521-80537-6.
External links
Wikimedia Commons has media related to Terraforming. |
- Red Colony
- New Mars forum
- Terraformers Society of Canada
- Visualizing the steps of solar system terraforming
- Research Paper: Technological Requirements for Terraforming Mars
- Terraformers Australia
- Terraformers UK
- The Terraformation of Worlds
- Terraformation de Mars
- Fogg, Martyn J. The Terraforming Information Pages
- BBC article on Charles Darwin's and Joseph Hooker's artificial ecosystem on Ascension Island that may be of interest to terraforming projects
- "Bugs in Space- Microscopic miners could help humans thrive on other planets". Scientific American magazine. By Charles Q. Choi (October 1, 2010)
- Robotic Lunar Ecopoiesis Test Bed Principal Investigator: Paul Todd (2004)
No comments:
Post a Comment