An Independent Mind, Knot Logic

The Secret of the Universe is Choice: Know Decision; http://thesecretoftheuniversechoice.blogspot.com/ (https://beingsandrice.blogspot.com/)

Hi, where are you from?

My photo
Karen Placek
Presents, a Life with a Plan. My name is Karen Anastasia Placek, I am the author of this Google Blog. This is the story of my journey, a quest to understanding more than myself. The title of my first blog delivered more than a million views!! The title is its work as "The Secret of the Universe is Choice!; know decision" will be the next global slogan. Placed on T-shirts, Jackets, Sweatshirts, it really doesn't matter, 'cause a picture with my slogan is worth more than a thousand words, it's worth??.......Know Conversation!!!
View my complete profile

Monday, March 28, 2022

Boom

 


 

In Cantore Arithmetic there must be the ability to subtract: Geometry being poetry.  This context to contents is intended to add and subtract to equal at Albert Einstein, e = mc2.  The basis of popular belief with ancient sites is to look and say at what tends to the belief of popular in agreement.  The basis of cantore arithmetic is to wilt this basis and add to commercial option to word to book at the table of physics.

 


At today’s lesson the ‘keyhole’ to the “what is that” will apply as this is the farm to ranch technique of arithmetic to metric mile. 

Kofun (古墳, from Sino-Japanese "ancient grave") are megalithic tombs or tumuli in Northeast Asia. Kofun were mainly constructed in the Japanese archipelago between the middle of the 3rd century to the early 7th century CE.[1]

The term is the origin of the name of the Kofun period, which indicates the middle 3rd century to early–middle 6th century. Many Kofun have distinctive keyhole-shaped mounds (zempō-kōen fun (前方後円墳)). The Mozu-Furuichi kofungun or tumulus clusters were inscribed on the UNESCO World Heritage List in 2019, while Ishibutai Kofun is one of a number in Asuka-Fujiwara residing on the Tentative List.[2][3]

 

List of mathematical symbols by subject

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
For interpretations of these symbols, see Glossary of mathematical symbols.

The following list of mathematical symbols by subject features a selection of the most common symbols used in modern mathematical notation within formulas, grouped by mathematical topic. As it is impossible to know if a complete list existing today of all symbols used in history is a representation of all ever used in history, as this would necessitate knowing if extant records are of all usages, only those symbols which occur often in mathematics or mathematics education are included. Many of the characters are standardized, for example in DIN 1302 General mathematical symbols or DIN EN ISO 80000-2 Quantities and units – Part 2: Mathematical signs for science and technology.

The following list is largely limited to non-alphanumeric characters. It is divided by areas of mathematics and grouped within sub-regions. Some symbols have a different meaning depending on the context and appear accordingly several times in the list. Further information on the symbols and their meaning can also be found in the respective linked articles.

Contents

  • 1 Guide
  • 2 Set theory
    • 2.1 Definition symbols
    • 2.2 Set construction
    • 2.3 Set operations
    • 2.4 Set relations
    • 2.5 Number sets
    • 2.6 Cardinality
  • 3 Arithmetic
    • 3.1 Arithmetic operators
    • 3.2 Equality signs
    • 3.3 Arithmetic comparison
    • 3.4 Divisibility and modulo
    • 3.5 Intervals
    • 3.6 Elementary functions
    • 3.7 Complex numbers
    • 3.8 Mathematical constants
  • 4 Calculus
    • 4.1 Sequences and series
    • 4.2 Functions
    • 4.3 Limits
    • 4.4 Asymptotic behaviour
    • 4.5 Differential calculus
    • 4.6 Integral calculus
    • 4.7 Vector calculus
    • 4.8 Topology
    • 4.9 Functional analysis
  • 5 Linear algebra and geometry
    • 5.1 Elementary geometry
    • 5.2 Vectors and matrices
    • 5.3 Vector calculus
    • 5.4 Matrix calculus
    • 5.5 Vector spaces
  • 6 Algebra
    • 6.1 Relations
      • 6.1.1 Equivalence relations/classes
      • 6.1.2 Orders relations
    • 6.2 Group theory
    • 6.3 Field theory
    • 6.4 Ring theory
    • 6.5 Morphisms
  • 7 Combinatorics
  • 8 Stochastics
    • 8.1 Probability theory
    • 8.2 Statistics
  • 9 Logic
    • 9.1 Operators
    • 9.2 Quantifiers
    • 9.3 Deduction symbols
    • 9.4 End of proof symbols
  • 10 Alphanumeric Symbols
    • 10.1 Digits
    • 10.2 Alphabets
    • 10.3 Greek Letters
  • 11 See also
  • 12 Bibliography
  • 13 External links

Guide

The following information is provided for each mathematical symbol:

Symbol
The symbol as it is represented by LaTeX. If there are several typographic variants, only one of the variants is shown.
Usage
An exemplary use of the symbol in a formula. Letters here stand as a placeholder for numbers, variables or complex expressions. Different possible applications are listed separately.
Articles with usage
Examples of Wikipedia articles in which the symbol is used.
LaTeX
The LaTeX command that creates the icon. Characters from the ASCII character set can be used directly, with a few exceptions (e.g., pound sign #, backslash \, braces {}, and percent sign %). High-and low-position is indicated via the ^ and _ characters, and is not explicitly specified.
HTML
The icon in HTML, if it is defined as a named mark. Non-named characters can be indicated in the form &#xnnnn by specifying the Unicode code point of the next column. High-and low-position can be indicated via <sup></sup> and <sub></sub>. The character × whose HTML code is times can be displayed by typing &times;.
Unicode
The code point of the corresponding Unicode character. Some characters are combining and require the entry of additional characters. For brackets, the code points of opening and closing forms are specified. The Unicode character ⨯ whose hexadecimal value is U+2A2F can be displayed by typing &#x2A2F; where #x indicates that the value in hexadecimal.

Set theory

Definition symbols

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
: {\displaystyle \colon } \colon : A : B {\displaystyle A\colon B} {\displaystyle A\colon B} Definition \colon &colon; U+003A
A : = B {\displaystyle A\colon =B} {\displaystyle A\colon =B}
A : ⇔ B {\displaystyle A\colon \Leftrightarrow B} {\displaystyle A\colon \Leftrightarrow B}

Set construction

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
∅ {\displaystyle \varnothing } \varnothing
∅ {\displaystyle \emptyset } \emptyset
∅
Empty set \varnothing,
\emptyset
&empty; U+2205
{   } {\displaystyle \{~\}} \{~\} { } { a , b , … } {\displaystyle \{a,b,\ldots \}} \{a,b,\ldots \} Set (mathematics) \{ \}
U+007B/D
∣ {\displaystyle \mid } \mid | { a ∣ T ( a ) } {\displaystyle \{a\mid T(a)\}} \{a\mid T(a)\} \mid &VerticalLine; U+007C
: {\displaystyle \colon } \colon : { a : T ( a ) } {\displaystyle \{a\,\colon T(a)\}} \{a\,\colon T(a)\} \colon &colon; U+003A

Set operations

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
∪ {\displaystyle \cup } \cup ∪ A ∪ B {\displaystyle A\cup B} A\cup B Union (set theory) \cup &cup; U+222A
⋃ {\displaystyle \bigcup } \bigcup ⋃ ⋃ {\displaystyle \bigcup } \bigcup \bigcup &xcup; U+22C3
∩ {\displaystyle \cap } \cap ∩ A ∩ B {\displaystyle A\cap B} A\cap B Intersection (set theory) \cap &cap; U+2229
⋂ {\displaystyle \bigcap } \bigcap ⋂ ⋂ {\displaystyle \bigcap } \bigcap \bigcap &Intersection; U+22C2
∖ {\displaystyle \setminus } \setminus ∖ A ∖ B {\displaystyle A\setminus B} A\setminus B Difference (set theory) \setminus &smallsetminus; U+2216
△ {\displaystyle \triangle } \triangle ∆ A △ B {\displaystyle A\,\triangle \,B} A\,\triangle \,B Symmetric difference \triangle &Delta; U+2206
× {\displaystyle \times } \times ⨯ A × B {\displaystyle A\times B} A\times B Cartesian product \times &times; U+2A2F
∪ ˙ {\displaystyle {\dot {\cup }}} {\dot {\cup }} ⊍ A ∪ ˙ B {\displaystyle A\,{\dot {\cup }}\,B} A\,{\dot {\cup }}\,B Disjoint union \dot\cup &cupdot; U+228D
⊎ {\displaystyle \uplus } \uplus ⊎ A ⊎ B {\displaystyle A\uplus B} {\displaystyle A\uplus B} \uplus &uplus; U+228E
⊔ {\displaystyle \sqcup } \sqcup ⊔ A ⊔ B {\displaystyle A\sqcup B} A\sqcup B \sqcup &SquareUnion; U+2294
∩ ˙ {\displaystyle {\dot {\cap }}} {\displaystyle {\dot {\cap }}} ⩀ A ∩ ˙ B {\displaystyle A{\dot {\cap }}B} {\displaystyle A{\dot {\cap }}B} Intersection (set theory) \dot\cap &capdot; U+2A40
⊓ {\displaystyle \sqcap } \sqcap ⊓ A ⊓ B {\displaystyle A\sqcap B} {\displaystyle A\sqcap B} \sqcap &SquareIntersection; U+2293
{\displaystyle } {\displaystyle } ⩄ {\displaystyle } {\displaystyle } \capwedge &capand; U+2A44
{\displaystyle } {\displaystyle } ⫛ {\displaystyle } {\displaystyle } Transversal intersection \mlcp &mlcp; U+2ADB
C {\displaystyle {}^{\mathrm {C} }} {}^{\mathrm {C} } ∁ A C {\displaystyle A^{\mathrm {C} }} A^{\mathrm {C} } Complement (set theory) \mathrm{C} &complement; U+2201
  ¯ {\displaystyle {\bar {~}}} {\bar {~}} ◌̄ z ¯ {\displaystyle {\bar {z}}} {\bar {z}} \bar &#x304; U+0304
    ¯ {\displaystyle {\overline {~~}}} {\overline {~~}} ◌̅ A ¯ {\displaystyle {\overline {A}}} {\overline {A}} \overline{A}
U+0305
P {\displaystyle {\mathcal {P}}} {\mathcal {P}} 𝒫 P ( A ) {\displaystyle {\mathcal {P}}(A)} {\mathcal {P}}(A) Power set \mathcal{P} &Pscr; U+1D4AB
P {\displaystyle {\mathfrak {P}}} {\mathfrak {P}} 𝔓 P ( A ) {\displaystyle {\mathfrak {P}}(A)} {\mathfrak {P}}(A) \mathfrak{P} &Pfr; U+1D513
℘ {\displaystyle \wp } \wp ℘ ℘ ( A ) {\displaystyle \wp (A)} {\displaystyle \wp (A)} \wp &wp; U+2118
⋀ {\displaystyle \bigwedge } \bigwedge ⋀ ⋀ x ∈ A {\displaystyle {\bigwedge }_{x\in A}} {\displaystyle {\bigwedge }_{x\in A}} Infimum and supremum \bigwedge &Wedge; U+22C0
⋁ {\displaystyle \bigvee } \bigvee ⋁ ⋁ x ∈ A {\displaystyle {\bigvee }_{x\in A}} {\displaystyle {\bigvee }_{x\in A}} \bigvee &xvee; U+22C1

Set relations

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
⊂ {\displaystyle \subset } \subset ⊂ A ⊂ B {\displaystyle A\subset B} A\subset B Subset \subset &sub; U+2282
⊊ {\displaystyle \subsetneq } \subsetneq ⊊ A ⊊ B {\displaystyle A\subsetneq B} A\subsetneq B \subsetneq &subne; U+228A
⊆ {\displaystyle \subseteq } \subseteq ⊆ A ⊆ B {\displaystyle A\subseteq B} A\subseteq B \subseteq &sube; U+2286
{\displaystyle } {\displaystyle } ⟃ A ⟃ B


U+27C3
⊃ {\displaystyle \supset } \supset ⊃ A ⊃ B {\displaystyle A\supset B} A\supset B Superset \supset &sup; U+2283
⊋ {\displaystyle \supsetneq } \supsetneq ⊋ A ⊋ B {\displaystyle A\supsetneq B} A\supsetneq B \supsetneq &supne; U+228B
⊇ {\displaystyle \supseteq } \supseteq ⊇ A ⊇ B {\displaystyle A\supseteq B} A\supseteq B \supseteq &supe; U+2287
{\displaystyle } {\displaystyle } ⟄ A ⟄ B


U+27C3
⊄ {\displaystyle \not \subset } \not \subset ⊄ A ⊄ B {\displaystyle A\not \subset B} {\displaystyle A\not \subset B}
\not\subset &nsub; U+2284
⊅ {\displaystyle \not \supset } \not \supset ⊅ A ⊅ B {\displaystyle A\not \supset B} {\displaystyle A\not \supset B} Superset \not\supset &nsup; U+2285
⊈ {\displaystyle \not \subseteq } {\displaystyle \not \subseteq } ⊈ A ⊈ B {\displaystyle A\not \subseteq B} A\not \subseteq B
\not\subseteq &NotSubsetEqual; U+2288
⊉ {\displaystyle \not \supseteq } {\displaystyle \not \supseteq } ⊉ A ⊉ B {\displaystyle A\not \supseteq B} {\displaystyle A\not \supseteq B} Superset \not\supseteq &NotSupersetEqual; U+2289
∈ {\displaystyle \in } \in ∈ a ∈ A {\displaystyle a\in A} a\in A Element (mathematics) \in &isin; U+2208
∋ {\displaystyle \ni } \ni ∋ A ∋ a {\displaystyle A\ni a} A\ni a \ni, \owns &ni; U+220B
∉ {\displaystyle \notin } \notin ∉ a ∉ A {\displaystyle a\notin A} a\notin A \notin &notin; U+2209
∌ {\displaystyle \not \ni } \not \ni ∌ A ∌ a {\displaystyle A\not \ni a} A\not \ni a \not\ni &NotReverseElement; U+220C
⊏ {\displaystyle \sqsubset } {\displaystyle \sqsubset } ⊏ A ⊏ B {\displaystyle A\sqsubset B} {\displaystyle A\sqsubset B} Substring \sqsubset &SquareSubset; U+228F
⊐ {\displaystyle \sqsupset } \sqsupset ⊐ A ⊐ B {\displaystyle A\sqsupset B} {\displaystyle A\sqsupset B} \sqsupset &SquareSuperset; U+2290
⊑ {\displaystyle \sqsubseteq } \sqsubseteq ⊑ A ⊑ B {\displaystyle A\sqsubseteq B} {\displaystyle A\sqsubseteq B} \sqsubseteq &sqsubseteq; U+2291
⊒ {\displaystyle \sqsupseteq } {\displaystyle \sqsupseteq } ⊒ A ⊒ B {\displaystyle A\sqsupseteq B} {\displaystyle A\sqsupseteq B} \sqsupseteq &SquareSupersetEqual; U+2292

Note: The symbols ⊂ {\displaystyle \subset } \subset and ⊃ {\displaystyle \supset } \supset are used inconsistently and often do not exclude the equality of the two quantities.

Number sets

Symbol Unicode character Articles with usage LaTeX HTML Unicode Hex
A {\displaystyle \mathbb {A} } \mathbb {A} 𝔸 Algebraic number \mathbb{A} &Aopf; U+1D538
C {\displaystyle \mathbb {C} } \mathbb{C} ℂ Complex number \mathbb{C} &Copf; U+2102
H {\displaystyle \mathbb {H} } \mathbb {H} ℍ Quaternion \mathbb{H} &quaternions; U+210D
N {\displaystyle \mathbb {N} } \mathbb {N} ℕ Natural number \mathbb{N} &Nopf; U+2115
Q {\displaystyle \mathbb {Q} } \mathbb {Q} ℚ Rational number \mathbb{Q} &Qopf; U+211A
R {\displaystyle \mathbb {R} } \mathbb {R} ℝ Real number \mathbb{R} &Ropf; U+211D
Z {\displaystyle \mathbb {Z} } \mathbb {Z} ℤ Integer \mathbb{Z} &Zopf; U+2124

Cardinality

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
|     | {\displaystyle |~~|} |~~| | | | A | {\displaystyle |A|} |A| Cardinality \vert &VerticalLine; U+007C
# {\displaystyle \#} \# # # A {\displaystyle \#A} \#A \# &num; U+0023
c {\displaystyle {\mathfrak {c}}} {\mathfrak {c}} 𝔠
Cardinality of the continuum \mathfrak{c} &cfr; U+1D520
ℵ {\displaystyle \aleph } \aleph ℵ ℵ 0 {\displaystyle \aleph _{0}} \aleph _{0}, ℵ 1 {\displaystyle \aleph _{1}} \aleph _{1}, ... Aleph number \aleph &aleph; U+2135
ℶ {\displaystyle \beth } \beth ℶ ℶ 0 {\displaystyle \beth _{0}} \beth _{0}, ℶ 1 {\displaystyle \beth _{1}} \beth _{1}, ... Beth number \beth &beth; U+2136

Arithmetic

Arithmetic operators

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
+ {\displaystyle +} + + a + b {\displaystyle a+b} a+b Addition + &plus; U+002B
− {\displaystyle -} - − a − b {\displaystyle a-b} a-b Subtraction - &minus; U+2212
⋅ {\displaystyle \cdot } \cdot ⋅ a ⋅ b {\displaystyle a\cdot b} a\cdot b Multiplication \cdot &sdot; U+22C5
× {\displaystyle \times } \times ⨯ a × b {\displaystyle a\times b} a\times b \times &times; U+2A2F
: {\displaystyle :} : : or ∶ a : b {\displaystyle a:b} a:b Division (mathematics) : &ratio; U+003A or U+2236
/ {\displaystyle /} / ∕ a / b {\displaystyle a/b} a/b /
U+2215
÷ {\displaystyle \div } \div ÷ a ÷ b {\displaystyle a\div b} a\div b \div &divide; U+00F7
        {\displaystyle {\frac {~~}{~~}}} {\frac {~~}{~~}} ⁄ a b {\displaystyle {\tfrac {a}{b}}} {\tfrac {a}{b}} \frac &frasl; U+2044
− {\displaystyle -} - − − a {\displaystyle -a} -a Unary minus - &minus; U+2212
± {\displaystyle \pm } \pm ± ± a {\displaystyle \pm a} \pm a Plus or minus sign \pm &plusmn; U+00B1
∓ {\displaystyle \mp } \mp ∓ ∓ a {\displaystyle \mp a} \mp a \mp &mnplus; U+2213
(   ) {\displaystyle (~)} (~) ( ) ( a ) {\displaystyle (a)} (a) Bracket ( ) &lpar; &rpar; U+0028/9
[   ] {\displaystyle [~]} [~] [ ] [ a ] {\displaystyle [a]} [a] [ ] &lsqb; &rsqb; U+005B/D
⌈     ⌉ {\displaystyle \lceil ~~\rceil } \lceil ~~\rceil ⌈ ⌉ ⌈ x ⌉ {\displaystyle \lceil x\rceil } \lceil x\rceil Floor and ceiling functions \lceil \rceil &lceil; &rceil; U+2308/9
⌊     ⌋ {\displaystyle \lfloor ~~\rfloor } \lfloor ~~\rfloor ⌊ ⌋ ⌊ x ⌋ {\displaystyle \lfloor x\rfloor } \lfloor x\rfloor \lfloor \rfloor &lfloor; &rfloor; U+230A/B

Equality signs

See also: Wiktionary:Appendix:Variations of "="
Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
= {\displaystyle =} = = a = b {\displaystyle a=b} a=b Equality (mathematics) = &equals; U+003D
# {\displaystyle \#} \# # a # b {\displaystyle a\#b} {\displaystyle a\#b} Apartness relation \# &num; U+0023
≠ {\displaystyle \neq } \neq ≠ a ≠ b {\displaystyle a\neq b} a\neq b Inequality (mathematics) \neq &ne; U+2260
≡ {\displaystyle \equiv } \equiv ≡ a ≡ b {\displaystyle a\equiv b} a\equiv b Identity (mathematics) \equiv &equiv; U+2261
≈ {\displaystyle \approx } \approx ≈ a ≈ b {\displaystyle a\approx b} a\approx b Approximation \approx &asymp; U+2248
∼ {\displaystyle \sim } \sim ∼ a ∼ b {\displaystyle a\sim b} a\sim b Equivalence class \sim &sim; U+223C
∝ {\displaystyle \propto } \propto ∝ a ∝ b {\displaystyle a\propto b} a\propto b Proportionality (mathematics) \propto &prop; U+221D
= ^ {\displaystyle {\widehat {=}}} {\widehat {=}} ≙ a = ^ b {\displaystyle a\,{\widehat {=}}\,b} a\,{\widehat {=}}\,b Correspondence (mathematics) \widehat{=} &wedgeq; U+2259
= ? {\displaystyle {\overset {?}{=}}} {\displaystyle {\overset {?}{=}}} ≟ a = ? b {\displaystyle a\,{\overset {?}{=}}\,b} {\displaystyle a\,{\overset {?}{=}}\,b} Asks "is it equal to" \overset{?}{=} &questeq; U+225F
= def {\displaystyle {\overset {\operatorname {def} }{=}}} {\displaystyle {\overset {\operatorname {def} }{=}}} ≝ a = def b {\displaystyle a\,{\overset {\operatorname {def} }{=}}\,b} {\displaystyle a\,{\overset {\operatorname {def} }{=}}\,b} Equal to by definition \overset{\operatorname{def}}{=} &#x225D; U+225D
≜ {\displaystyle \triangleq } \triangleq ≜ a ≜ b {\displaystyle a\,\triangleq \,b} {\displaystyle a\,\triangleq \,b} Equal to by definition \triangleq &trie; U+225C
≐ {\displaystyle \doteq } \doteq ≐ x n ≐ b {\displaystyle x_{n}\,\doteq \,b} {\displaystyle x_{n}\,\doteq \,b} Approaches the limit \doteq &esdot; U+2250
See also: Equals sign

Arithmetic comparison

See also: Order relations, Set relations
Symbol Unicode character Usage LaTeX HTML Unicode Hex
< {\displaystyle <} < < a < b {\displaystyle a<b} a<b < &lt; U+003C
> {\displaystyle >} > > a > b {\displaystyle a>b} a>b > &gt; U+003E
≤ {\displaystyle \leq } \leq ≤ a ≤ b {\displaystyle a\leq b} a\leq b \le, \leq &le; U+2264
≥ {\displaystyle \geq } \geq ≥ a ≥ b {\displaystyle a\geq b} a\geq b \ge, \geq &ge; U+2265
≦ {\displaystyle \leqq } \leqq ≦ a ≦ b {\displaystyle a\leqq b} a\leqq b \leqq &LessFullEqual; U+2266
≧ {\displaystyle \geqq } \geqq ≧ a ≧ b {\displaystyle a\geqq b} a\geqq b \geqq &GreaterFullEqual; U+2267
⩽ {\displaystyle \leqslant } {\displaystyle \leqslant } ⩽ a ⩽ b {\displaystyle a\leqslant b} {\displaystyle a\leqslant b} \leqslant &LessSlantEqual U+2A7D
⩾ {\displaystyle \geqslant } \geqslant ⩾ a ⩾ b {\displaystyle a\geqslant b} {\displaystyle a\geqslant b} \geqslant &GreaterSlantEqual U+2A7E
≪ {\displaystyle \ll } \ll ≪ a ≪ b {\displaystyle a\ll b} a\ll b \ll &NestedLessLess; U+226A
≫ {\displaystyle \gg } \gg ≫ a ≫ b {\displaystyle a\gg b} a\gg b \gg &NestedGreaterGreater; U+226B
≲ {\displaystyle \lesssim } \lesssim ≲ a ≲ b {\displaystyle a\lesssim b} {\displaystyle a\lesssim b} \lesssim &lsim; U+2272
≳ {\displaystyle \gtrsim } \gtrsim ≳ a ≳ b {\displaystyle a\gtrsim b} {\displaystyle a\gtrsim b} \gtrsim &GreaterTilde; U+2273
⪅ {\displaystyle \lessapprox } {\displaystyle \lessapprox } ⪅ a ⪅ b {\displaystyle a\lessapprox b} {\displaystyle a\lessapprox b} \lessapprox &lessapprox; U+2A85
⪆ {\displaystyle \gtrapprox } {\displaystyle \gtrapprox } ⪆ a ⪆ b {\displaystyle a\gtrapprox b} {\displaystyle a\gtrapprox b} \gtrapprox &gap; U+2A86
Symbol Unicode character Usage LaTeX HTML Unicode Hex
≶ {\displaystyle \lessgtr } {\displaystyle \lessgtr } ≶ a ≶ b {\displaystyle a\lessgtr b} {\displaystyle a\lessgtr b} \lessgtr &LessGreater U+2276
≷ {\displaystyle \gtrless } {\displaystyle \gtrless } ≷ a ≷ b {\displaystyle a\gtrless b} {\displaystyle a\gtrless b} \gtrless &GreaterLess; U+2277
⋚ {\displaystyle \lesseqgtr } {\displaystyle \lesseqgtr } ⋚ a ⋚ b {\displaystyle a\lesseqgtr b} {\displaystyle a\lesseqgtr b} \lesseqgtr &LessEqualGreater; U+22DA
⋛ {\displaystyle \gtreqless } {\displaystyle \gtreqless } ⋛ a ⋛ b {\displaystyle a\gtreqless b} {\displaystyle a\gtreqless b} \gtreqless &GreaterEqualLess; U+22DB
⪋ {\displaystyle \lesseqqgtr } {\displaystyle \lesseqqgtr } ⪋ a ⪋ b {\displaystyle a\lesseqqgtr b} {\displaystyle a\lesseqqgtr b} \lesseqqgtr &lesseqqgtr; U+2A8B
⪌ {\displaystyle \gtreqqless } {\displaystyle \gtreqqless } ⪌ a ⪌ b {\displaystyle a\gtreqqless b} {\displaystyle a\gtreqqless b} \gtreqqless &gtreqqless; U+2A8C

Divisibility and modulo

Symbol Unicode character Usage LaTeX HTML Unicode Hex
∣ {\displaystyle \mid } \mid ∣ a ∣ b {\displaystyle a\mid b} a\mid b \mid &VerticalBar; U+2223
∤ {\displaystyle \nmid } \nmid ∤ a ∤ b {\displaystyle a\nmid b} a\nmid b \nmid &NotVerticalBar; U+2224
⊥ {\displaystyle \perp } \perp ⊥ a ⊥ b {\displaystyle a\perp b} a\perp b \perp &perp; U+22A5
⊓ {\displaystyle \sqcap } \sqcap ⊓ a ⊓ b {\displaystyle a\sqcap b} a\sqcap b \sqcap &SquareIntersection; U+2293
∧ {\displaystyle \wedge } \wedge ∧ a ∧ b {\displaystyle a\wedge b} a\wedge b \wedge &and; U+2227
⊔ {\displaystyle \sqcup } \sqcup ⊔ a ⊔ b {\displaystyle a\sqcup b} a\sqcup b \sqcup &SquareUnion; U+2294
∨ {\displaystyle \vee } \vee ∨ a ∨ b {\displaystyle a\vee b} a\vee b \vee &or; U+2228
Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex Other information
≡ {\displaystyle \equiv } \equiv ≡ a ≡ b {\displaystyle a\equiv b} a\equiv b Modulo operation \equiv &equiv; U+2261
mod m {\displaystyle \mod m} {\displaystyle \mod m} mod a mod m {\displaystyle a\mod m} {\displaystyle a\mod m} \mod m mod
<math>\mod</math> without a trailing symbol (e.g. m {\displaystyle m} m) will product an error.
( mod m ) {\displaystyle {\pmod {m}}} {\displaystyle {\pmod {m}}} (mod) a ( mod m ) {\displaystyle a{\pmod {m}}} {\displaystyle a{\pmod {m}}} \pmod m (mod)
<math>\pmod</math> without a trailing symbol (e.g. m {\displaystyle m} m) will product an error.

Intervals

Symbol Usage LaTeX HTML Unicode Hex
[     ] {\displaystyle [~~]} [~~] [ a , b ] {\displaystyle [a,b]} [a,b] ( )
[ ]
&lpar; &rpar;
&lsqb; &rsqb;
U+0028/9
U+005B/D
]     [ {\displaystyle ]~~[} ]~~[ ] a , b [ {\displaystyle ]a,b[} ]a,b[
(     ) {\displaystyle (~~)} (~~) ( a , b ) {\displaystyle (a,b)} (a,b)
[     [ {\displaystyle [~~[} [~~[ [ a , b [ {\displaystyle [a,b[} [a,b[
[     ) {\displaystyle [~~)} [~~) [ a , b ) {\displaystyle [a,b)} [a,b)
]     ] {\displaystyle ]~~]} ]~~] ] a , b ] {\displaystyle ]a,b]} ]a,b]
(     ] {\displaystyle (~~]} (~~] ( a , b ] {\displaystyle (a,b]} (a,b]

Elementary functions

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
{\displaystyle {\sqrt {\,}}} {\sqrt {\,}} √ x {\displaystyle {\sqrt {x}}} {\sqrt {x}} nth root \sqrt &radic; U+221A

x n {\displaystyle {\sqrt[{n}]{x}}} {\sqrt[{n}]{x}} \sqrt[n]{x}
% {\displaystyle \%} \% % x % {\displaystyle x\,\%} x\,\% Percentage \% &percnt; U+0025
[     ] {\displaystyle \left[~~\right]} \left[~~\right] [ ] [ x ] {\displaystyle \left[x\right]} \left[x\right] Floor and ceiling functions [ ] &lsqb; &rsqb; U+005B/D
|     | {\displaystyle |~~|} |~~| | | | x | {\displaystyle |x|} |x| Absolute value \vert &VerticalLine; U+007C
{     } {\displaystyle \left\{~~\right\}} {\displaystyle \left\{~~\right\}} { } { x } {\displaystyle \left\{x\right\}} {\displaystyle \left\{x\right\}} Fractional part \{ \} &lcub; &rcub; U+007B/D
⌈     ⌉ {\displaystyle \lceil ~~\rceil } \lceil ~~\rceil ⌈ ⌉ ⌈ x ⌉ {\displaystyle \lceil x\rceil } \lceil x\rceil Floor and ceiling functions \lceil \rceil &lceil; &rceil; U+2308/9
⌊     ⌋ {\displaystyle \lfloor ~~\rfloor } \lfloor ~~\rfloor ⌊ ⌋ ⌊ x ⌋ {\displaystyle \lfloor x\rfloor } \lfloor x\rfloor \lfloor \rfloor &lfloor; &rfloor; U+230A/B
⌜     ⌝ {\displaystyle \ulcorner ~~\urcorner } {\displaystyle \ulcorner ~~\urcorner } ⌜ ⌝ ⌜ x ⌝ {\displaystyle \ulcorner x\urcorner } {\displaystyle \ulcorner x\urcorner } \ulcorner \urcorner &ulcorner; &urcorner; U+231C/D
⌞     ⌟ {\displaystyle \llcorner ~~\lrcorner } {\displaystyle \llcorner ~~\lrcorner } ⌞ ⌟ ⌞ x ⌟ {\displaystyle \llcorner x\lrcorner } {\displaystyle \llcorner x\lrcorner } \llcorner \lrcorner &llcorner; &lrcorner; U+231E/F
⌢ {\displaystyle \frown } {\displaystyle \frown }  ⌢​ x ⌢ {\displaystyle {\stackrel {\frown }{x}}} {\displaystyle {\stackrel {\frown }{x}}} Cap product \frown &frown; U+2322
⌣ {\displaystyle \smile } \smile  ⌣​ x ⌣ {\displaystyle {\stackrel {\smile }{x}}} {\displaystyle {\stackrel {\smile }{x}}} Cup product \smile &smile; U+2323

Note: the power function is not represented by its own icon, but by the positioning of the exponent as a superscript.

Complex numbers

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
ℑ {\displaystyle \Im } \Im ℑ ℑ ( z ) {\displaystyle \Im (z)} \Im (z) Complex number \Im &image; U+2111
ℜ {\displaystyle \Re } \Re ℜ ℜ ( z ) {\displaystyle \Re (z)} \Re (z) \Re &Rfr; U+211C
  ¯ {\displaystyle {\bar {~}}} {\bar {~}} ◌̄ z ¯ {\displaystyle {\bar {z}}} {\bar {z}} Complex conjugate \bar &#x304; U+0304
  ¯ ¯ {\displaystyle {\bar {\bar {~}}}} {\displaystyle {\bar {\bar {~}}}} ◌̄̄ z ¯ ¯ {\displaystyle {\bar {\bar {z}}}} {\displaystyle {\bar {\bar {z}}}} \bar{\bar{}} &#x304;&#x304;
    ¯ {\displaystyle {\overline {~~}}} {\overline {~~}} ◌̅ z ¯ {\displaystyle {\overline {z}}} {\overline {z}} \overline &#x305; U+0305
    ¯ ¯ {\displaystyle {\overline {\overline {~~}}}} {\displaystyle {\overline {\overline {~~}}}} ◌̅̅ z ¯ ¯ {\displaystyle {\overline {\overline {z}}}} {\displaystyle {\overline {\overline {z}}}} \overline{\overline{}} &#x305;&#x305;
∗ {\displaystyle {}^{\ast }} {}^{\ast } * z ∗ {\displaystyle z^{\ast }} z^{\ast } \ast
U+002A
|     | {\displaystyle |~~|} |~~| | | z | {\displaystyle |z|} |z| Absolute value \vert &VerticalLine; U+007C
arg ⁡ {\displaystyle \arg {}} {\displaystyle \arg {}}
arg ⁡ ( z ) {\displaystyle \arg(z)} \arg(z) Polar coordinate system \arg

Remark: real and imaginary parts of a complex number are often also denoted by Re {\displaystyle \operatorname {Re} } \operatorname {Re} and Im {\displaystyle \operatorname {Im} } \operatorname {Im} .

Mathematical constants

Symbol Unicode character Articles with usage LaTeX HTML Template Unicode Hex Note
π {\displaystyle \pi } \pi π Pi \pi &pi; {{pi}} U+03C0
e {\displaystyle e} e or e {\displaystyle \mathrm {e} } \mathrm {e} e e (mathematics) e or \mathrm{e} e
U+0065 Recommend {{mvar|e}} or {{math|e}} over e
ϕ {\displaystyle \phi } \phi ϕ Golden ratio \phi &phi; {{phi}} U+03C6
φ {\displaystyle \varphi } \varphi φ \varphi &straightphi; {{varphi}} U+03D5
i {\displaystyle i} i or i {\displaystyle \mathrm {i} } {\displaystyle \mathrm {i} } i Imaginary unit i or \mathrm{i} i
U+0069 Recommend {{mvar|i}} or {{math|i}} over i
γ {\displaystyle \gamma } \gamma γ Euler–Mascheroni constant \gamma &gamma; {{gamma}} U+03B3
ϵ {\displaystyle \epsilon } \epsilon ε Vacuum permittivity \epsilon &epsi; {{epsilon}} U+03B5
ε {\displaystyle \varepsilon } \varepsilon ϵ Dual number \varepsilon &varepsilon; {{varepsilon}} U+03F5
θ {\displaystyle \theta } \theta θ Mills' constant \theta &theta; {{theta}} U+03B8
ϑ {\displaystyle \vartheta } \vartheta ϑ \vartheta &vartheta; {{vartheta}} U+03D1
σ {\displaystyle \sigma } \sigma σ Somos' quadratic recurrence constant \sigma &sigma; {{sigma}} U+03C3
ς {\displaystyle \varsigma } \varsigma ς \varsigma &varsigma; {{varsigma}} U+03C2
κ {\displaystyle \kappa } \kappa κ Einstein gravitational constant \kappa &kappa; {{kappa}} U+03BA
λ {\displaystyle \lambda } \lambda λ Prouhet–Thue–Morse constant \lambda &lambda; {{lambda}} U+03BB
μ {\displaystyle \mu } \mu μ Ramanujan–Soldner constant \mu &mu; {{mu}} U+03BC
τ {\displaystyle \tau } \tau τ Prouhet–Thue–Morse constant \tau &tau; {{tau}} U+03C4
For for symbols of additional mathematical constants, see Mathematical constant.

Calculus

Sequences and series

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
∑ {\displaystyle \sum } \sum ∑ ∑ i = 1 n , ∑ i ∈ I {\displaystyle \sum _{i=1}^{n},\sum _{i\in I}} \sum _{i=1}^{n},\sum _{i\in I} Summation \sum &sum; U+2211
∏ {\displaystyle \prod } \prod ∏ ∏ i = 1 n , ∏ i ∈ I {\displaystyle \prod _{i=1}^{n},\prod _{i\in I}} \prod _{i=1}^{n},\prod _{i\in I} Product (mathematics) \prod &prod; U+220F
∐ {\displaystyle \coprod } \coprod ∐ ∐ i = 1 n , ∐ i ∈ I {\displaystyle \coprod _{i=1}^{n},\coprod _{i\in I}} \coprod _{i=1}^{n},\coprod _{i\in I} Coproduct \coprod &Coproduct; U+2210
(     ) {\displaystyle (~~)} (~~) ( ) ( a n ) {\displaystyle (a_{n})} (a_{n}) Sequence ( ) &lpar; &rpar; U+0028/9
→ {\displaystyle \to } \to → a n → a {\displaystyle a_{n}\to a} a_{n}\to a Limit of a sequence \to \rarr &rarr; U+2192
∞ {\displaystyle \infty } \infty ∞ n → ∞ {\displaystyle n\to \infty } n\to \infty Infinity \infty &infin; U+221E

Functions

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
→ {\displaystyle \to } \to → f : A → B {\displaystyle f\colon A\to B} f\colon A\to B Function (mathematics) \to &rarr; U+2192
A → f B {\displaystyle A\,{\stackrel {f}{\to }}\,B} A\,{\stackrel {f}{\to }}\,B
↦ {\displaystyle \mapsto } \mapsto ↦ f : x ↦ y {\displaystyle f\colon x\mapsto y} f\colon x\mapsto y \mapsto &mapstoright; U+21A6
x ↦ f y {\displaystyle x\,{\stackrel {f}{\mapsto }}\,y} x\,{\stackrel {f}{\mapsto }}\,y
(     ) {\displaystyle (~~)} (~~) ( ) f ( x ) {\displaystyle f(x)} f(x) Image (mathematics) ( ) &lpar; &rpar; U+0028/9
f ( X ) {\displaystyle f(X)} f(X)
[     ] {\displaystyle [~~]} [~~] [ ] f [ X ] {\displaystyle f[X]} f[X] [ ] &lbrack; or &rbrack; U+005B/D
| {\displaystyle \vert } \vert | f | X {\displaystyle f\vert _{X}} f\vert _{X} Restriction (mathematics) \vert &VerticalLine; U+007C
⋅ {\displaystyle \cdot } \cdot ⋅ f ( ⋅ ) {\displaystyle f(\cdot )} f(\cdot ) Free variable \cdot &sdot; U+22C5
− 1 {\displaystyle {}^{-1}} {}^{-1} ⁻ f − 1 {\displaystyle f^{-1}} f^{-1} Inverse function -1
U+207B
∘ {\displaystyle \circ } \circ ∘ f ∘ g {\displaystyle f\circ g} f\circ g Function composition \circ &#8728; U+2218
∗ {\displaystyle \ast } \ast ∗ f ∗ g {\displaystyle f\ast g} f\ast g Convolution \ast &lowast; U+2217
  ^ {\displaystyle {\hat {~}}} {\hat {~}} ◌̂ f ^ {\displaystyle {\hat {f}}} {\hat {f}} Fourier transform \hat
U+0302

Limits

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
→ {\displaystyle \to } \to → lim x → a f ( x ) {\displaystyle \lim _{x\to a}f(x)} \lim _{x\to a}f(x) Limit of a function \to or
\rightarrow
&rarr; or
&rightarrow;
U+2192
⟶ {\displaystyle \longrightarrow } \longrightarrow ⟶ x ⟶ a {\displaystyle x\longrightarrow a} {\displaystyle x\longrightarrow a} \longrightarrow &LongRightArrow; U+27F6
↑ {\displaystyle \uparrow } \uparrow ↑ lim x ↑ a f ( x ) {\displaystyle \lim _{x\uparrow a}f(x)} \lim _{x\uparrow a}f(x) \uparrow &uarr; or
&ShortUpArrow;
U+2191
↗ {\displaystyle \nearrow } \nearrow ↗ lim x ↗ a f ( x ) {\displaystyle \lim _{x\nearrow a}f(x)} \lim _{x\nearrow a}f(x) \nearrow &UpperRightArrow; U+2197
↘ {\displaystyle \searrow } \searrow ↘ lim x ↘ a f ( x ) {\displaystyle \lim _{x\searrow a}f(x)} \lim _{x\searrow a}f(x) \searrow &LowerRightArrow; U+2198
↓ {\displaystyle \downarrow } \downarrow ↓ lim x ↓ a f ( x ) {\displaystyle \lim _{x\downarrow a}f(x)} \lim _{x\downarrow a}f(x) \downarrow &darr; or
&ShortDownArrow;
U+2193
↙ {\displaystyle \swarrow } \swarrow ↙ a ↙ x {\displaystyle a\swarrow x} {\displaystyle a\swarrow x} \swarrow &LowerLeftArrow; U+2199
← {\displaystyle \leftarrow } \leftarrow ← a ← x {\displaystyle a\leftarrow x} {\displaystyle a\leftarrow x} \leftarrow &larr; or
&ShortLeftArrow;
U+2190
⟵ {\displaystyle \longleftarrow } {\displaystyle \longleftarrow } ⟵ a ⟵ x {\displaystyle a\longleftarrow x} {\displaystyle a\longleftarrow x} \longleftarrow &longleftarrow; U+27F5
↖ {\displaystyle \nwarrow } \nwarrow ↖ a ↖ x {\displaystyle a\nwarrow x} {\displaystyle a\nwarrow x} \nwarrow &UpperLeftArrow; U+2196
+ {\displaystyle ^{+}} {\displaystyle ^{+}} ⁺ lim x → a + f ( x ) {\displaystyle \lim _{x\to a^{+}}f(x)} {\displaystyle \lim _{x\to a^{+}}f(x)} ^+ &#8314; U+207A
− {\displaystyle ^{-}} {\displaystyle ^{-}} ⁻ lim x → a − f ( x ) {\displaystyle \lim _{x\to a^{-}}f(x)} {\displaystyle \lim _{x\to a^{-}}f(x)} ^- &#8315; U+207B

Asymptotic behaviour

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
∼ {\displaystyle \sim } \sim ∼ f ∼ {\displaystyle f\sim } {\displaystyle f\sim } Asymptotic analysis \sim &sim; U+223C
o {\displaystyle o} o o f ∈ o ( g ) {\displaystyle f\in o(g)} f\in o(g) Big O notation o
U+006F
O {\displaystyle {\mathcal {O}}} {\mathcal {O}} 𝒪 f ∈ O ( g ) {\displaystyle f\in {\mathcal {O}}(g)} f\in {\mathcal {O}}(g) \mathcal{O} &Oscr; U+1D4AA
Θ {\displaystyle \Theta } \Theta Θ f ∈ Θ ( g ) {\displaystyle f\in \Theta (g)} f\in \Theta (g) \Theta &Theta; U+0398
Ω {\displaystyle \Omega } \Omega Ω f ∈ Ω ( g ) {\displaystyle f\in \Omega (g)} f\in \Omega (g) \Omega &Omega; U+03A9
ω {\displaystyle \omega } \omega ω f ∈ ω ( g ) {\displaystyle f\in \omega (g)} f\in \omega (g) \omega &omega; U+03C9

Differential calculus

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
′ {\displaystyle {}'} {}'
′ {\displaystyle {}^{\prime }} {\displaystyle {}^{\prime }}
′ f ′ {\displaystyle f'} f'
f ′ {\displaystyle f^{\prime }} {\displaystyle f^{\prime }}
Lagrange's notation
Prime (symbol)
'
^\prime
&prime; U+2032
″ {\displaystyle {}''} {}''
′ ′ {\displaystyle {}^{\prime \prime }} {\displaystyle {}^{\prime \prime }}
″ f ″ {\displaystyle f''} f''
f ′ ′ {\displaystyle f^{\prime \prime }} {\displaystyle f^{\prime \prime }}
''
^{\prime\prime}
&Prime; U+2033
‴ {\displaystyle {}'''} {\displaystyle {}'''}
′ ′ ′ {\displaystyle {}^{\prime \prime \prime }} {\displaystyle {}^{\prime \prime \prime }}
‴ f ‴ {\displaystyle f'''} {\displaystyle f'''}
f ′ ′ ′ {\displaystyle f^{\prime \prime \prime }} {\displaystyle f^{\prime \prime \prime }}
'''
^{\prime\prime\prime}
&tprime; U+2034
⁗ {\displaystyle {}''''} {\displaystyle {}''''}
′ ′ ′ ′ {\displaystyle {}^{\prime \prime \prime \prime }} {\displaystyle {}^{\prime \prime \prime \prime }}
⁗ f ⁗ {\displaystyle f''''} {\displaystyle f''''}
f ′ ′ ′ ′ {\displaystyle f^{\prime \prime \prime \prime }} {\displaystyle f^{\prime \prime \prime \prime }}
''''
^{\prime\prime\prime\prime}
&qprime; U+2057
I V V V I {\displaystyle ^{IV}\;{}^{V}\;{}^{VI}} {\displaystyle ^{IV}\;{}^{V}\;{}^{VI}}
f I V , f V , f V I {\displaystyle f^{IV},f^{V},f^{VI}} {\displaystyle f^{IV},f^{V},f^{VI}} ^{IV} ^V ^{VI} <sup>IV</sup>
i v v v i {\displaystyle ^{iv}\;{}^{v}\;{}^{vi}} {\displaystyle ^{iv}\;{}^{v}\;{}^{vi}}
f i v , f v , f v i {\displaystyle f^{iv},f^{v},f^{vi}} {\displaystyle f^{iv},f^{v},f^{vi}} ^{iv} ^v ^{vi} <sup>iv</sup>
(   ) {\displaystyle {}^{(~)}} {}^{(~)} ⁽ ⁾ f ( 4 ) , f ( 5 ) , f ( n ) {\displaystyle f^{(4)},f^{(5)},f^{(n)}} {\displaystyle f^{(4)},f^{(5)},f^{(n)}} ^{( )} <sup>( )</sup> U+207D/E
    ˙ {\displaystyle {\dot {~~}}} {\displaystyle {\dot {~~}}} ◌̇ f ˙ {\displaystyle {\dot {f}}} {\dot  f} Newton's notation \dot &#x0307; U+0307
    ¨ {\displaystyle {\ddot {~~}}} {\displaystyle {\ddot {~~}}} ◌̈ f ¨ {\displaystyle {\ddot {f}}} {\displaystyle {\ddot {f}}} \ddot &#x0308; U+0308
d {\displaystyle d} d d d x {\displaystyle dx} dx Leibniz's notation d d U+0064
d f d x {\displaystyle {\frac {df}{dx}}} {\frac {df}{dx}}
d d x f {\displaystyle {\frac {d}{dx}}f} {\displaystyle {\frac {d}{dx}}f}
d 2 d x 2 f {\displaystyle {\frac {d^{2}}{dx^{2}}}f} {\displaystyle {\frac {d^{2}}{dx^{2}}}f}
d f {\displaystyle df} df
∂ {\displaystyle \partial } \partial ∂ ∂ f ∂ x {\displaystyle {\frac {\partial f}{\partial x}}} \frac{\partial f}{\partial x} Partial derivative \partial &part; U+2202
Main article: Differential calculus

Integral calculus

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
∫ {\displaystyle \int } \int ∫ ∫ a b {\displaystyle \int _{a}^{b}} \int _{a}^{b} , ∫ G {\displaystyle \int _{G}} {\displaystyle \int _{G}} Integral \int &int; U+222B
∬ {\displaystyle \iint } \iint ∬ ∬ F {\displaystyle \iint _{\mathcal {F}}} \iint _{\mathcal {F}} Surface integral \iint &Int; U+222C
∭ {\displaystyle \iiint } \iiint ∭ ∭ V {\displaystyle \iiint _{V}} \iiint _{V} Volume integral \iiint &tint; U+222D
∮ {\displaystyle \oint } \oint ∮ ∮ γ {\displaystyle \oint _{\gamma }} \oint _{\gamma } Curve integral \oint &ContourIntegral; U+222E
∯ {\displaystyle \oiint } {\displaystyle \oiint } ∯ ∯ γ {\displaystyle \oiint _{\gamma }} {\displaystyle \oiint _{\gamma }} Surface integral \oiint &DoubleContourIntegral; U+222F
See also: Extensions of the integral symbol

Vector calculus

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
∇ {\displaystyle \nabla } \nabla ∇ ∇ f {\displaystyle \nabla f} \nabla f Gradient \nabla &nabla; U+2207
∇ ⋅ F {\displaystyle \nabla \cdot F} \nabla \cdot F Divergence
∇ × F {\displaystyle \nabla \times F} \nabla \times F Curl (mathematics)
Δ {\displaystyle \Delta } \Delta ∆ Δ f {\displaystyle \Delta f} \Delta f Laplace operator \Delta &Delta; U+2206
◻ {\displaystyle \square } \square □ ◻ f {\displaystyle \square f} \square f D'Alembert operator \square &#9633; U+25A1

Topology

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
∂ {\displaystyle \partial } \partial ∂ ∂ U {\displaystyle \partial U} \partial U Boundary (topology) \partial &part; U+2202
∘ {\displaystyle {}^{\circ }} {}^{\circ } ˚ U ∘ {\displaystyle U^{\circ }} U^{\circ } Interior (topology) \circ &deg; U+02DA
  ¯ {\displaystyle {\bar {~}}} {\bar {~}} ◌̄ z ¯ {\displaystyle {\bar {z}}} {\bar {z}} Closure (topology) \bar &#x304; U+0304
    ¯ {\displaystyle {\overline {~~}}} {\overline {~~}} ◌̅ z ¯ {\displaystyle {\overline {z}}} {\overline {z}} \overline &#x305; U+0305
  ˙ {\displaystyle {\dot {~}}} {\dot {~}} ◌̇ U ˙ ( x ) {\displaystyle {\dot {U}}(x)} {\dot {U}}(x) Punctured neighbourhood \dot
U+0307

Functional analysis

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
′ {\displaystyle {}'} {}' ′ V ′ {\displaystyle V'} V' Dual space \prime &prime; U+2032/3
″ {\displaystyle {}''} {}'' ″ V ″ {\displaystyle V''} V''
  ^ {\displaystyle {\hat {~}}} {\hat {~}} ◌̂ X ^ {\displaystyle {\hat {X}}} {\hat {X}} Complete metric space \hat
U+0302
↪ {\displaystyle \hookrightarrow } \hookrightarrow ↪ X ↪ Y {\displaystyle X\hookrightarrow Y} X\hookrightarrow Y Embedding \hookrightarrow
U+21AA

Linear algebra and geometry

Elementary geometry

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
[     ] {\displaystyle [~~]} [~~] [ ] [ A B ] {\displaystyle [AB]} [AB] Line segment [ ] \left[ \right] &lsqb; &rsqb; U+005B/D
|     | {\displaystyle |~~|} |~~| | | | A B | {\displaystyle |AB|} |AB| \vert &VerticalLine; U+007C
    ¯ {\displaystyle {\overline {~~}}} {\overline {~~}} ̅ A B ¯ {\displaystyle {\overline {AB}}} {\overline {AB}} \overline &#x305; U+0305
    _ {\displaystyle {\underline {~~}}} {\displaystyle {\underline {~~}}} ̲ A B _ {\displaystyle {\underline {AB}}} {\underline {AB}} \underline &#x332; U+0332
    → {\displaystyle {\overrightarrow {~~}}} {\overrightarrow {~~}} ⃗ A B → {\displaystyle {\overrightarrow {AB}}} {\overrightarrow {AB}} Euclidean vector
and Affine space
\vec &#x20D7; U+20D7
∠ {\displaystyle \angle } \angle ∠ ∠ A B C {\displaystyle \angle ABC} \angle ABC Angle \angle &ang; U+2220
△ {\displaystyle \triangle } \triangle △ △ A B C {\displaystyle \triangle ABC} \triangle ABC Triangle \triangle &bigtriangleup; U+25B3
◻ {\displaystyle \square } \square □ ◻ A B C D {\displaystyle \square {\mathit {ABCD}}} \square {\mathit {ABCD}} Quadrilateral \square &squ; U+25A1
∥ {\displaystyle \parallel } \parallel ∥ g ∥ h {\displaystyle g\parallel h} g\parallel h Parallel (geometry) \parallel &shortparallel; U+2225
∦ {\displaystyle \nparallel } \nparallel ∦ g ∦ h {\displaystyle g\nparallel h} g\nparallel h \nparallel &NotDoubleVerticalBar; U+2226
⊥ {\displaystyle \perp } \perp ⟂ g ⊥ h {\displaystyle g\perp h} g\perp h Orthogonality \perp &perp; U+27C2

Vectors and matrices

Symbol Articles with usage LaTeX
( v 1 , … , v n ) {\displaystyle {\begin{pmatrix}v_{1},\ldots ,v_{n}\end{pmatrix}}} {\begin{pmatrix}v_{1},\ldots ,v_{n}\end{pmatrix}} Vector (mathematics and physics) \begin{pmatrix}
...
\end{pmatrix}

or

\left(
\begin{array}{...}
...
\end{array}
\right)
( v 1 ⋮ v m ) {\displaystyle {\begin{pmatrix}v_{1}\\\vdots \\v_{m}\end{pmatrix}}} {\begin{pmatrix}v_{1}\\\vdots \\v_{m}\end{pmatrix}}
( a 11 … a 1 n ⋮ ⋱ ⋮ a m 1 … a m n ) {\displaystyle {\begin{pmatrix}a_{11}&\!\ldots \!&a_{1n}\\\vdots &\!\ddots \!&\vdots \\a_{m1}&\!\ldots \!&a_{mn}\end{pmatrix}}} {\begin{pmatrix}a_{11}&\!\ldots \!&a_{1n}\\\vdots &\!\ddots \!&\vdots \\a_{m1}&\!\ldots \!&a_{mn}\end{pmatrix}} Matrix (mathematics)

Vector calculus

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
⋅ {\displaystyle \cdot } \cdot ⋅ v ⋅ w {\displaystyle v\cdot w} v\cdot w Dot product

Inner product space

\cdot &sdot; U+22C5
(     ) {\displaystyle (~~)} (~~) ( ) ( v , w ) {\displaystyle (v,w)} (v,w) ( ) &lpar; &rpar; U+0028/9
⟨     ⟩ {\displaystyle \langle ~~\rangle } \langle ~~\rangle ⟨ ⟩ ⟨ v , w ⟩ {\displaystyle \langle v,w\rangle } \langle v,w\rangle
⟨ v | w ⟩ {\displaystyle \langle v\,|\,w\rangle } \langle v\,|\,w\rangle
\langle \rangle &lang; &rang; U+27E8/9
× {\displaystyle \times } \times ⨯ v × w {\displaystyle v\times w} v\times w Cross product \times &times; U+2A2F
[     ] {\displaystyle [~~]} [~~] [ ] [ v , w ] {\displaystyle [v,w]} [v,w] [ ] &lsqb; &rsqb; U+005B/D
(     ) {\displaystyle (~~)} (~~) ( ) ( u , v , w ) {\displaystyle (u,v,w)} (u,v,w) Triple product ( ) &lpar; &rpar; U+0028/9
⊗ {\displaystyle \otimes } \otimes ⊗ v ⊗ w {\displaystyle v\otimes w} v\otimes w Dyadic product \otimes &otimes; U+2297
∧ {\displaystyle \wedge } \wedge ∧ v ∧ w {\displaystyle v\wedge w} v\wedge w Exterior algebra \wedge &and; U+2227
|     | {\displaystyle |~~|} |~~| | | | v | {\displaystyle |v|} |v| Euclidean norm \vert &VerticalLine; U+007C
‖     ‖ {\displaystyle \|~~\|} \|~~\| ‖ ‖ v ‖ {\displaystyle \|v\|} \|v\| Norm (mathematics) \Vert, \| &Vert; U+2016
  ^ {\displaystyle {\hat {~}}} {\hat {~}} ̂ v ^ {\displaystyle {\hat {v}}} {\hat {v}} Unit vector \hat{} &#x302; U+0302

Matrix calculus

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
⋅ {\displaystyle \cdot } \cdot ⋅ A ⋅ B {\displaystyle A\cdot B} A\cdot B Matrix multiplication \cdot &sdot; U+22C5
∘ {\displaystyle \circ } \circ ∘ A ∘ B {\displaystyle A\circ B} A\circ B Hadamard product (matrices) \circ &SmallCircle; U+2218
⊘ {\displaystyle \oslash } \oslash ⊘ A ⊘ B {\displaystyle A\oslash B} {\displaystyle A\oslash B} Hadamard product (matrices) \oslash &osol; U+2298
⊗ {\displaystyle \otimes } \otimes ⊗ A ⊗ B {\displaystyle A\otimes B} A\otimes B Kronecker product \otimes &otimes; U+2297
T {\displaystyle {}^{\mathrm {T} }} {}^{\mathrm {T} } T A T {\displaystyle A^{\mathrm {T} }} A^{\mathrm {T} } Transposed matrix ^T
U+0054
⊺ {\displaystyle {}^{\intercal }} {\displaystyle {}^{\intercal }} ⊺ A ⊺ {\displaystyle A^{\intercal }} {\displaystyle A^{\intercal }} \intercal &intercal; U+22BA
H {\displaystyle {}^{\mathrm {H} }} {}^{\mathrm {H} } H A H {\displaystyle A^{\mathrm {H} }} A^{\mathrm {H} } Conjugate transpose ^H
U+0048
∗ {\displaystyle {}^{\ast }} {}^{\ast } * A ∗ {\displaystyle A^{\ast }} A^{\ast } \ast &lowast; U+002A
† {\displaystyle {}^{\dagger }} {}^{\dagger } † A † {\displaystyle A^{\dagger }} A^{\dagger } \dagger &dagger; U+2020
− 1 {\displaystyle {}^{-1}} {}^{-1} ⁻ A − 1 {\displaystyle A^{-1}} A^{-1} Inverse matrix -1
U+207B
+ {\displaystyle {}^{+}} {}^{+} + A + {\displaystyle A^{+}} A^{+} Moore–Penrose pseudoinverse + &plus; U+002B
|     | {\displaystyle |~~|} |~~| | A | | A | {\displaystyle |A|} |A| Determinant \vert &VerticalLine; U+007C
‖     ‖ {\displaystyle \|~~\|} \|~~\| ‖ ‖ A ‖ {\displaystyle \|A\|} \|A\| Matrix norm \Vert, \| &Vert; U+2016

Vector spaces

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
+ {\displaystyle +} + + V + W {\displaystyle V+W} V+W Direct sum of modules + &plus; U+002B
⊕ {\displaystyle \oplus } \oplus ⊕ V ⊕ W {\displaystyle V\oplus W} V\oplus W \oplus &oplus; U+2295
× {\displaystyle \times } \times ⨯ V × W {\displaystyle V\times W} V\times W Direct product \times &times; U+2A2F
⊗ {\displaystyle \otimes } \otimes ⊗ V ⊗ W {\displaystyle V\otimes W} V\otimes W Tensor product \otimes &otimes; U+2297
/ {\displaystyle /} / / V / U {\displaystyle V\,/\,U} V\,/\,U Quotient space (linear algebra) / &frasl; U+002F
⊥ {\displaystyle {}^{\perp }} {}^{\perp } ⟂ U ⊥ {\displaystyle U^{\perp }} U^{\perp } Orthogonal complement \perp &perp; U+27C2
∗ {\displaystyle {}^{\ast }} {}^{\ast } * V ∗ {\displaystyle V^{\ast }} V^{\ast } Dual space \ast &lowast; U+002A
0 {\displaystyle {}^{0}} {}^{0} 0 X 0 {\displaystyle X^{0}} X^{0} 0
U+0030
⟨     ⟩ {\displaystyle \langle ~~\rangle } \langle ~~\rangle ⟨ ⟩ ⟨ X ⟩ {\displaystyle \langle X\rangle } \langle X\rangle Linear hull \langle \rangle &lang; &rang; U+27E8/9

Algebra

Relations

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
∘ {\displaystyle \circ } \circ ∘ R ∘ S {\displaystyle R\circ S} R\circ S Composition of relations \circ &SmallCircle; U+2218
a ∘ b {\displaystyle a\circ b} a\circ b Operation (mathematics)
∙ {\displaystyle \bullet } \bullet • a ∙ b {\displaystyle a\bullet b} a\bullet b \bullet &bull; U+2219
∗ {\displaystyle \ast } \ast ∗ a ∗ b {\displaystyle a\ast b} a\ast b \ast &lowast; U+2217
/ {\displaystyle /} / / M / ∼ {\displaystyle M/\sim } M/\sim Quotient set / &sol; U+002F
− 1 {\displaystyle {}^{-1}} {}^{-1} ⁻ R − 1 {\displaystyle R^{-1}} R^{-1} Multiplicative inverse -1
U+207B
+ {\displaystyle {}^{+}} {}^{+} + R + {\displaystyle R^{+}} R^{+} Transitive closure +
U+002B
∗ {\displaystyle {}^{\ast }} {}^{\ast } * R ∗ {\displaystyle R^{\ast }} R^{\ast } Reflexive closure \ast &lowast; U+002A

Equivalence relations/classes

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
[     ] {\displaystyle [~~]} [~~] [ ] [ a ] {\displaystyle [a]} [a] Equivalence class [ ] &lsqb; &rsqb; U+005B/D
∼ {\displaystyle \sim } \sim ∼ a ∼ b {\displaystyle a\sim b} a\sim b Equivalence relation \sim &sim;, &Tilde; U+223C
∽ {\displaystyle \backsim } \backsim ∽ a ∽ b {\displaystyle a\backsim b} {\displaystyle a\backsim b} \backsim &bsim; U+223D
≁ {\displaystyle \nsim } {\displaystyle \nsim } ≁ a ≁ b {\displaystyle a\nsim b} {\displaystyle a\nsim b} \not\sim, \nsim &nsim; U+2241
≂ {\displaystyle \eqsim } {\displaystyle \eqsim } ≂ a ≂ b {\displaystyle a\eqsim b} {\displaystyle a\eqsim b} \eqsim &EqualTilde; U+2242
≃ {\displaystyle \simeq } \simeq ≃ a ≃ b {\displaystyle a\simeq b} {\displaystyle a\simeq b} \simeq &TildeEqual; U+2243
≅ {\displaystyle \cong } \cong ≅ a ≅ b {\displaystyle a\cong b} {\displaystyle a\cong b} \cong &TildeFullEqual; U+2245
≆ {\displaystyle \ncong } {\displaystyle \ncong } ≇ a ≆ b {\displaystyle a\ncong b} {\displaystyle a\ncong b} \not\cong, \ncong &NotTildeFullEqual; U+2247

Orders relations

See also: Arithmetic comparison, Set relations
Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
≤ {\displaystyle \leq } \leq ≤ a ≤ b {\displaystyle a\leq b} a\leq b Order relation \leq, \le &leq;, &le; U+2264
≥ {\displaystyle \geq } \geq ≥ a ≥ b {\displaystyle a\geq b} a\geq b \geq, \ge &geq;, &ge; U+2265
≮ {\displaystyle \nless } {\displaystyle \nless } ≮ a ≮ b {\displaystyle a\nless b} {\displaystyle a\nless b} \nless &nlt;, &NotLess; U+226E
≯ {\displaystyle \ngtr } {\displaystyle \ngtr } ≯ a ≯ b {\displaystyle a\ngtr b} {\displaystyle a\ngtr b} \ngtr &ngt;, &NotGreater; U+226F
≰ {\displaystyle \nleq } {\displaystyle \nleq } ≰ a ≰ b {\displaystyle a\nleq b} {\displaystyle a\nleq b} \not\leq, \nleq &nle;, &NotLessEqual; U+2270
≱ {\displaystyle \ngeq } {\displaystyle \ngeq } ≱ a ≱ b {\displaystyle a\ngeq b} {\displaystyle a\ngeq b} \not\geq, \ngeq &nge;, &NotGreaterEqual; U+2271
≲ {\displaystyle \lesssim } \lesssim ≲ a ≲ b {\displaystyle a\lesssim b} {\displaystyle a\lesssim b} Inequality (mathematics) \lesssim &lsim;, &LessTilde; U+2272
≳ {\displaystyle \gtrsim } \gtrsim ≳ a ≳ b {\displaystyle a\gtrsim b} {\displaystyle a\gtrsim b} \gtrsim &gsim;, &GreaterTilde; U+2273
≴ {\displaystyle \not \lesssim } {\displaystyle \not \lesssim } ≴ a ≴ b {\displaystyle a\not \lesssim b} {\displaystyle a\not \lesssim b} \not\lesssim &NotLessTilde; U+2274
≵ {\displaystyle \not \gtrsim } {\displaystyle \not \gtrsim } ≵ a ≵ b {\displaystyle a\not \gtrsim b} {\displaystyle a\not \gtrsim b} \not\gtrsim &NotGreaterTilde; U+2275
≺ {\displaystyle \prec } \prec ≺ a ≺ b {\displaystyle a\prec b} a\prec b Successor ordinal \prec &prec; U+227A
≻ {\displaystyle \succ } \succ ≻ a ≻ b {\displaystyle a\succ b} a\succ b \succ &succ; U+227B
≼ {\displaystyle \preccurlyeq } {\displaystyle \preccurlyeq } ≼ a ≼ b {\displaystyle a\preccurlyeq b} {\displaystyle a\preccurlyeq b} \preccurlyeq &PrecedesSlantEqual; U+227C
≽ {\displaystyle \succcurlyeq } \succcurlyeq ≽ a ≽ b {\displaystyle a\succcurlyeq b} {\displaystyle a\succcurlyeq b} \succcurlyeq &SucceedsSlantEqual; U+227D
≾ {\displaystyle \precsim } \precsim ≾ a ≾ b {\displaystyle a\precsim b} {\displaystyle a\precsim b} \precsim &PrecedesTilde; U+227E
≿ {\displaystyle \succsim } \succsim ≿ a ≿ b {\displaystyle a\succsim b} {\displaystyle a\succsim b} \succsim &SucceedsTilde; U+227F
⪯ {\displaystyle \preceq } \preceq ⪯ a ⪯ b {\displaystyle a\preceq b} {\displaystyle a\preceq b} \preceq &PrecedesEqual; U+2AAF
⪰ {\displaystyle \succeq } \succeq ⪰ a ⪰ b {\displaystyle a\succeq b} {\displaystyle a\succeq b} \succeq &SucceedsEqual; U+2AB0
⋞ {\displaystyle \curlyeqprec } {\displaystyle \curlyeqprec } ⋞ a ⋞ b {\displaystyle a\curlyeqprec b} {\displaystyle a\curlyeqprec b} \curlyeqprec &curlyeqprec; U+22DE
⋟ {\displaystyle \curlyeqsucc } {\displaystyle \curlyeqsucc } ⋟ a ⋟ b {\displaystyle a\curlyeqsucc b} {\displaystyle a\curlyeqsucc b} \curlyeqsucc &curlyeqsucc; U+22DF
⪯̸ {\displaystyle \not \preceq } {\displaystyle \not \preceq } ⊏ a ⊏ b {\displaystyle a\sqsubset b} {\displaystyle a\sqsubset b} Partially ordered set \sqsubset &sqsubset;
&SquareSubset;
U+228F
⊐ {\displaystyle \sqsupset } \sqsupset ⊐ a ⊐ b {\displaystyle a\sqsupset b} {\displaystyle a\sqsupset b} \sqsupset &sqsupset;
&SquareSuperset;
U+2290
⊑ {\displaystyle \sqsubseteq } \sqsubseteq ⊑ a ⊑ b {\displaystyle a\sqsubseteq b} {\displaystyle a\sqsubseteq b} \sqsubseteq &sqsubseteq;
&SquareSubsetEqual;
U+2291
⊒ {\displaystyle \sqsupseteq } {\displaystyle \sqsupseteq } ⊒ a ⊒ b {\displaystyle a\sqsupseteq b} {\displaystyle a\sqsupseteq b} \sqsupseteq &sqsupseteq;
&SquareSupersetEqual;
U+2292
⋢ {\displaystyle \not \sqsubseteq } {\displaystyle \not \sqsubseteq } ⋢ a ⋢ b {\displaystyle a\not \sqsubseteq b} {\displaystyle a\not \sqsubseteq b} \not\sqsubseteq &NotSquareSubsetEqual; U+22E2
⋣ {\displaystyle \not \sqsupseteq } {\displaystyle \not \sqsupseteq } ⋣ a ⋣ b {\displaystyle a\not \sqsupseteq b} {\displaystyle a\not \sqsupseteq b} \not\sqsupseteq &NotSquareSupersetEqual; U+22E3

Group theory

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
≃ {\displaystyle \simeq } \simeq ≃ G ≃ H {\displaystyle G\simeq H} G\simeq H Group isomorphism \simeq
U+2243
≅ {\displaystyle \cong } \cong ≅ G ≅ H {\displaystyle G\cong H} G\cong H \cong &cong; U+2245
× {\displaystyle \times } \times ⨯ G × H {\displaystyle G\times H} G\times H Direct product \times &times; U+2A2F
⋊ {\displaystyle \rtimes } \rtimes ⋊ G ⋊ H {\displaystyle G\rtimes H} G\rtimes H Semidirect product \rtimes &rtimes; U+22CA
≀ {\displaystyle \wr } \wr ≀ G ≀ H {\displaystyle G\,\wr \,H} G\,\wr \,H Wreath product \wr &VerticalTilde; U+2240
≤ {\displaystyle \leq } \leq ≤ U ≤ G {\displaystyle U\leq G} U\leq G Subgroup \leq &le; U+2264
< {\displaystyle <} < < U < G {\displaystyle U<G} U<G \lt &lt; U+003C
⊲ {\displaystyle \vartriangleleft } \vartriangleleft ⊲ N ⊲ G {\displaystyle N\vartriangleleft G} N\vartriangleleft G Normal subgroup \vartriangleleft &RightTriangle; U+22B3
⊴ {\displaystyle \trianglelefteq } {\displaystyle \trianglelefteq } ⊴ N ⊴ G {\displaystyle N\trianglelefteq G} {\displaystyle N\trianglelefteq G} \trianglelefteq &LeftTriangleEqual; U+22B4
⋪ {\displaystyle \not \vartriangleleft } {\displaystyle \not \vartriangleleft } ⋪ N ⋪ G {\displaystyle N\not \vartriangleleft G} {\displaystyle N\not \vartriangleleft G} \not\vartriangleleft &ntriangleleft; U+22EA
⋬ {\displaystyle \not \trianglelefteq } {\displaystyle \not \trianglelefteq } ⋬ N ⋬ G {\displaystyle N\not \trianglelefteq G} {\displaystyle N\not \trianglelefteq G} \not\trianglelefteq &NotLeftTriangleEqual; U+22EC
⊳ {\displaystyle \vartriangleright } {\displaystyle \vartriangleright } ⊳ G ⊳ N {\displaystyle G\vartriangleright N} {\displaystyle G\vartriangleright N} \vartriangleright &RightTriangle; U+22B3
⊵ {\displaystyle \trianglerighteq } {\displaystyle \trianglerighteq } ⊵ G ⊵ N {\displaystyle G\trianglerighteq N} {\displaystyle G\trianglerighteq N} \trianglerighteq &RightTriangleEqual; U+22B5
⋫ {\displaystyle \not \vartriangleright } {\displaystyle \not \vartriangleright } ⋫ G ⋫ N {\displaystyle G\not \vartriangleright N} {\displaystyle G\not \vartriangleright N} \not\vartriangleright &NotRightTriangle; U+22EB
⋭ {\displaystyle \not \trianglerighteq } {\displaystyle \not \trianglerighteq } ⋭ G ⋭ N {\displaystyle G\not \trianglerighteq N} {\displaystyle G\not \trianglerighteq N} \not\trianglerighteq &NotRightTriangleEqual; U+22ED
/ {\displaystyle /} / / G / N {\displaystyle G/N} G/N Quotient group / &frasl; U+002F
: {\displaystyle \colon } \colon : ( G : U ) {\displaystyle (G\colon U)} (G\colon U) Index of a subgroup \colon &colon; U+003A
⟨     ⟩ {\displaystyle \langle ~~\rangle } \langle ~~\rangle ⟨ ⟩ ⟨ E ⟩ {\displaystyle \langle E\rangle } \langle E\rangle Generating set of a group \langle \rangle &lang; &rang; U+27E8/9
[     ] {\displaystyle [~~]} [~~] [ ] [ g , h ] {\displaystyle [g,h]} [g,h] Commutator [ ] &lsqb; &rsqb; U+005B/D

Field theory

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
/ {\displaystyle /} / / L / K {\displaystyle L/K} L/K Field extension / &frasl; U+002F
∣ {\displaystyle \mid } \mid | L ∣ K {\displaystyle L\mid K} L\mid K \mid &VerticalLine; U+007C
: {\displaystyle \colon } \colon : L : K {\displaystyle L\colon K} L\colon K \colon &colon; U+003A

[ L : K ] {\displaystyle [L\colon K]} [L\colon K] Degree of a field extension
  ¯ {\displaystyle {\bar {~}}} {\bar {~}} ◌̄ K ¯ {\displaystyle {\bar {K}}} {\bar  {K}} Algebraic closure \bar &#x304; U+0304
    ¯ {\displaystyle {\overline {~~}}} {\overline {~~}} ◌̅ K ¯ {\displaystyle {\overline {K}}} {\overline {K}} \overline &#x305; U+0305
( ) {\displaystyle ()} {\displaystyle ()} ( ) K ( α ) {\displaystyle K(\alpha )} {\displaystyle K(\alpha )} Field extension, Algebraic number field ( ) &lpar; &rpar; U+0028/9
K {\displaystyle \mathbb {K} } \mathbb {K} 𝕂
Field (mathematics) \mathbb{K} &Kopf; U+1D542
F {\displaystyle \mathbb {F} } \mathbb {F} 𝔽
Finite field \mathbb{F} &Fopf; U+1D53D

Ring theory

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
∗ {\displaystyle {}^{\ast }} {}^{\ast } ∗ R ∗ {\displaystyle R^{\ast }} R^{\ast } Group of units \ast &lowast; U+2217
× {\displaystyle {}^{\times }} {}^{\times } ⨯ R × {\displaystyle R^{\times }} R^{\times } \times &times; U+2A2F
⊲ {\displaystyle \vartriangleleft } \vartriangleleft ⊲ I ⊲ R {\displaystyle I\vartriangleleft R} I\vartriangleleft R Ideal (ring theory) \vartriangleleft &LeftTriangle; U+22B2
/ {\displaystyle /} / / R / I {\displaystyle R/I} R/I Quotient ring / &frasl; U+002F
[     ] {\displaystyle [~~]} [~~] [ ] R [ X ] {\displaystyle R[X]} R[X] Polynomial ring [ ] &lsqb; &rsqb; U+005B/D
[ [     ] ] {\displaystyle [[~~]]} {\displaystyle [[~~]]} [ ] R [ [ X ] ] , R ( ( X ) ) {\displaystyle R[[X]],R((X))} {\displaystyle R[[X]],R((X))} Formal power series [[ ]] &lsqb; &rsqb; U+005B/D

Morphisms

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
→ {\displaystyle \to } \to → f : X → Y {\displaystyle f\colon X\to Y} f \colon X \to Y Morphism \to &rarr; U+2192
X , → f Y {\displaystyle X,{\stackrel {f}{\to }}\,Y} {\displaystyle X,{\stackrel {f}{\to }}\,Y}
↦ {\displaystyle \mapsto } \mapsto ↦ f : x ↦ y {\displaystyle f\colon x\mapsto y} f\colon x\mapsto y \mapsto &mapstoright; U+21A6
x ↦ f y {\displaystyle x\,{\stackrel {f}{\mapsto }}\,y} x\,{\stackrel {f}{\mapsto }}\,y
→ ∼ {\displaystyle {\overset {\sim }{\rightarrow }}} \overset{\sim}{\rightarrow} ⥲ f : X → ∼ Y {\displaystyle f\colon X{\overset {\sim }{\rightarrow }}Y} {\displaystyle f\colon X{\overset {\sim }{\rightarrow }}Y} Isomorphism \tilde{\rightarrow}
U+22B2
↪ {\displaystyle \hookrightarrow } \hookrightarrow ↪ f : X ↪ Y {\displaystyle f\colon X\hookrightarrow Y} {\displaystyle f\colon X\hookrightarrow Y} Monomorphism \hookrightarrow &#8618 U+021AA
X , ↪ f Y {\displaystyle X,{\stackrel {f}{\hookrightarrow }}\,Y} {\displaystyle X,{\stackrel {f}{\hookrightarrow }}\,Y}
↠ {\displaystyle \twoheadrightarrow } \twoheadrightarrow ↠ f : X ↠ Y {\displaystyle f\colon X\twoheadrightarrow Y} {\displaystyle f\colon X\twoheadrightarrow Y} Epimorphism \twoheadrightarrow &#8608 U+021A0
X ↠ f   Y {\displaystyle X{\stackrel {f}{\twoheadrightarrow }}\ Y} {\displaystyle X{\stackrel {f}{\twoheadrightarrow }}\ Y}

Combinatorics

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
! {\displaystyle !} ! ! n ! {\displaystyle n!} n! Factorial ! &excl; U+0021
! n {\displaystyle !n} !n Derangement
n ! ! {\displaystyle n!!} n!! Double factorial
(     ) {\displaystyle {\tbinom {~}{~}}} {\tbinom {~}{~}} ( ) ( n k ) {\displaystyle {\tbinom {n}{k}}} {\tbinom {n}{k}} Combination \binom &lpar; &rpar; U+0028/9
( n k 1 , … , k r ) {\displaystyle {\tbinom {n}{k_{1},\ldots ,k_{r}}}} {\tbinom {n}{k_{1},\ldots ,k_{r}}} Multinomial coefficient
( (     ) ) {\displaystyle \left(\!{\tbinom {~}{~}}\!\right)} \left(\!{\tbinom {~}{~}}\!\right) (( )) ( ( n k ) ) {\displaystyle \left(\!{\tbinom {n}{k}}\!\right)} \left(\!{\tbinom {n}{k}}\!\right) Multiset (( )) &lpar; &rpar; U+0028/9
  ¯ {\displaystyle {\overline {~}}} {\displaystyle {\overline {~}}} ◌̄ n m ¯ {\displaystyle n^{\bar {m}}} {\displaystyle n^{\bar {m}}} Pochhammer symbol \bar &#x304; U+0304
◌̅ n m ¯ {\displaystyle n^{\overline {m}}} n^{\overline {m}} \overline &#x305; U+0305
◌̲ n m _ {\displaystyle n^{\underline {m}}} n^{\underline {m}} \underline &#x332; U+0332
# {\displaystyle \#} \# # n # {\displaystyle n\#} n\# Primorial \# &num; U+0023

Stochastics

Probability theory

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
P {\displaystyle P} P
P ( A ) {\displaystyle P(A)} P(A) Probability measure P
U+2119
∣ {\displaystyle \mid } \mid
P ( A ∣ B ) {\displaystyle P(A\mid B)} P(A\mid B) Conditional probability \mid &VerticalLine; U+007C
/ {\displaystyle /} /
P ( A / B ) {\displaystyle P(A/B)} {\displaystyle P(A/B)} /
U+2215
E {\displaystyle E} E 𝔼 E ( X ) {\displaystyle E(X)} E(X) Expected value E &Eopf; U+1D53C
V {\displaystyle V} V 𝕍 V ( X ) {\displaystyle V(X)} V(X) Variance V &Vopf; U+1D54D
σ {\displaystyle \sigma } \sigma σ σ ( X ) {\displaystyle \sigma (X)} \sigma (X) Standard deviation \sigma &sigma; U+03C3
σ ( X , Y ) {\displaystyle \sigma (X,Y)} \sigma (X,Y) Covariance
ρ {\displaystyle \rho } \rho ρ ρ ( X , Y ) {\displaystyle \rho (X,Y)} \rho (X,Y) Correlation \rho &rho; U+03C1
∼ {\displaystyle \sim } \sim ∼ X ∼ F {\displaystyle X\sim F} X\sim F Probability distribution \sim &sim; U+223C
≈ {\displaystyle \approx } \approx ≈ X ≈ F {\displaystyle X\approx F} X\approx F \approx &asymp; U+2248
⊥ {\displaystyle {\displaystyle \perp }} {\displaystyle {\displaystyle \perp }} ⊥ A ⊥ B {\displaystyle A\perp B} A\perp B Independence (probability theory) \perp &perp; U+22A5
Remark: for operators there are several notational variants; instead of round brackets also square brackets are used

Statistics

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
  ¯ {\displaystyle {\bar {~}}} {\bar {~}} ◌̅ x ¯ {\displaystyle {\bar {x}}} {\bar {x}} Average \bar &#x304; U+0304
    ¯ {\displaystyle {\overline {~~}}} {\overline {~~}} ◌̅ m ¯ {\displaystyle {\overline {m}}} \overline {m} \overline &#x305; U+0305
⟨     ⟩ {\displaystyle \langle ~~\rangle } \langle ~~\rangle ⟨ ⟩ ⟨ X ⟩ {\displaystyle \langle X\rangle } \langle X\rangle \langle \rangle &lang; &rang; U+27E8/9
  ^ {\displaystyle {\hat {~}}} {\hat {~}} ◌̂ p ^ {\displaystyle {\hat {p}}} {\hat {p}} Estimator \hat ̂ U+0302

Logic

See also: List of logic symbols, Wikipedia:WikiProject Logic/Standards for notation, and MOS:MATH § TONE

The current Wikipedia guidelines advise against unnecessary use of ∀, ∃, and ⇔ and instead recommend writing out "for all", "there exists", and "if and only if." The same is true of abbreviations such as "iff", "s.t.", and "WLOG".

Operators

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
∧ {\displaystyle \land } \land ∧ A ∧ B {\displaystyle A\land B} A\land B Logical conjunction \land &and; U+2227
∨ {\displaystyle \lor } \lor ∨ A ∨ B {\displaystyle A\lor B} A\lor B Logical disjunction \lor &or; U+2228
⇔ {\displaystyle \Leftrightarrow } \Leftrightarrow ⇔ A ⇔ B {\displaystyle A\Leftrightarrow B} A\Leftrightarrow B Logical equivalence \Leftrightarrow &hArr; U+21D4
↔ {\displaystyle \leftrightarrow } \leftrightarrow ↔ A ↔ B {\displaystyle A\leftrightarrow B} A\leftrightarrow B \leftrightarrow &harr; U+2194
⟺ {\displaystyle \iff } \iff ⟺ A ⟺ B {\displaystyle A\iff B} {\displaystyle A\iff B} \iff &Longleftrightarrow; U+27FA
⇒ {\displaystyle \Rightarrow } \Rightarrow ⇒ A ⇒ B {\displaystyle A\Rightarrow B} A\Rightarrow B Logical consequence \Rightarrow &rArr; U+21D2
→ {\displaystyle \rightarrow } \rightarrow → A → B {\displaystyle A\rightarrow B} A\rightarrow B \rightarrow &rarr; U+2192
⟹ {\displaystyle \implies } \implies ⟹ A ⟹ B {\displaystyle A\implies B} {\displaystyle A\implies B} \implies &DoubleLongRightArrow; U+27F9
⟹ {\displaystyle \Longrightarrow } \Longrightarrow A ⟹ B {\displaystyle A\Longrightarrow B} {\displaystyle A\Longrightarrow B} \Longrightarrow
⊕ {\displaystyle \oplus } \oplus ⊕ A ⊕ B {\displaystyle A\oplus B} A\oplus B Exclusive or \oplus &oplus; U+2295
⊻ {\displaystyle \veebar } \veebar ⊻ A ⊻ B {\displaystyle A\,\veebar \,B} A\,\veebar \,B \veebar &veebar; U+22BB
∨ ˙ {\displaystyle {\dot {\lor }}} {\dot {\lor }} ⩒ A ∨ ˙ B {\displaystyle A\,{\dot {\lor }}\,B} A\,{\dot {\lor }}\,B \dot\lor
U+2A52
¬ {\displaystyle \lnot } \lnot ¬ ¬ A {\displaystyle \lnot A} \lnot A Logical negation \lnot &not; U+00AC
  ¯ {\displaystyle {\bar {~}}} {\bar {~}} ◌̄ A ¯ {\displaystyle {\bar {A}}} {\bar {A}} \bar &#x304; U+0304
    ¯ {\displaystyle {\overline {~~}}} {\overline {~~}} ̅ A ¯ {\displaystyle {\overline {A}}} {\overline {A}} \overline &#x305; U+0305
← {\displaystyle \leftarrow } \leftarrow ← A ← B {\displaystyle A\leftarrow B} {\displaystyle A\leftarrow B} Converse implication \leftarrow &ShortLeftArrow; U+2190
See also: Further symbols for binary connectives

Quantifiers

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
∀ {\displaystyle \forall } \forall ∀ ∀ x {\displaystyle \forall \,x} \forall \,x Universal quantification \forall &forall; U+2200
⋀ {\displaystyle \bigwedge } \bigwedge ⋀ ⋀ x {\displaystyle \bigwedge _{x}} \bigwedge _{x} \bigwedge &Wedge; U+22C0
∃ {\displaystyle \exists } \exists ∃ ∃ x {\displaystyle \exists \,x} \exists \,x Existential quantification \exists &exist; U+2203
⋁ {\displaystyle \bigvee } \bigvee ⋁ ⋁ x {\displaystyle \bigvee _{x}} \bigvee _{x} \bigvee &xvee; U+22C1
∃ ! {\displaystyle \exists !} \exists ! ∃! ∃ ! x {\displaystyle \exists !\,x} \exists !\,x Uniqueness quantification \exists! &exist;! U+2203!
⋁ ⋅ {\displaystyle \bigvee ^{\centerdot }} \bigvee ^{\centerdot } ⩒ ⋁ x ⋅ {\displaystyle \bigvee _{x}^{\centerdot }} \bigvee _{x}^{\centerdot } \dot\bigvee
U+2A52
∄ {\displaystyle \nexists } \nexists ∄ ∄ x {\displaystyle \nexists \,x} \nexists \,x Existential quantification \nexists &NotExists; U+2204

Deduction symbols

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
⊢ {\displaystyle \vdash } \vdash ⊢ A ⊢ B {\displaystyle A\vdash B} A\vdash B Propositional calculus, Turnstile \vdash &vdash; U+22A2
⊨ {\displaystyle \models } \models ⊨ A ⊨ B {\displaystyle A\models B} A\models B Inference \models &DoubleRightTee; U+22A8
⊨ A {\displaystyle \models A} \models A Tautology (logic)
⊤ {\displaystyle \top } \top ⊤ A ⊤ {\displaystyle A\top } A\top \top &top; U+22A4
⊥ {\displaystyle \bot } \bot ⊥ A ⊥ {\displaystyle A\bot } A\bot Contradiction \bot &perp; U+22A5
∴ {\displaystyle \therefore } \therefore ∴ A ∴ B {\displaystyle A\therefore B} A\therefore B Deductive reasoning \therefore &therefore; U+2234
∵ {\displaystyle \because } \because ∵ A ∵ B {\displaystyle A\because B} A\because B \because &because; U+2235

End of proof symbols

Symbol Unicode character Usage Articles with usage LaTeX HTML Unicode Hex
◼ {\displaystyle \blacksquare } \blacksquare ■ ...as desired. ◼ {\displaystyle \blacksquare } \blacksquare Q.E.D. \blacksquare &#x25A0; U+25A0
◻ {\displaystyle \Box } \Box □ \Box &squ; U+25A1
{\displaystyle } {\displaystyle } ∎ Tombstone
&#x220E; U+220E

Alphanumeric Symbols

Main article: Mathematical Alphanumeric Symbols

Digits

Caption: Digits
Name Digits
Double-struck 𝟘 𝟙 𝟚 𝟛 𝟜 𝟝 𝟞 𝟟 𝟠 𝟡

Alphabets

Caption: Alphabets
Name Sub-type Command Alphabet
Double-struck
\mathbb{...} 𝔸 𝔹 ℂ 𝔻 𝔼 𝔽 𝔾 ℍ 𝕀 𝕁 𝕂 𝕃 𝕄 ℕ 𝕆 ℙ ℚ ℝ 𝕊 𝕋 𝕌 𝕍 𝕎 𝕏 𝕐 ℤ
𝕒 𝕓 𝕔 𝕕 𝕖 𝕗 𝕘 𝕙 𝕚 𝕛 𝕜 𝕝 𝕞 𝕟 𝕠 𝕡 𝕢 𝕣 𝕤 𝕥 𝕦 𝕧 𝕨 𝕩 𝕪 𝕫
Italic
ⅆ ⅇ ⅈ ⅉ ℽ ℾ ℼ ℿ ⅀
Script/Calligraphy

𝒜 ℬ 𝒞 𝒟 ℰ ℱ 𝒢 ℋ ℐ 𝒥 𝒦 ℒ ℳ 𝒩 𝒪 𝒫 𝒬 ℛ 𝒮 𝒯 𝒰 𝒱 𝒲 𝒳 𝒴 𝒵

𝒶 𝒷 𝒸 𝒹 ℯ 𝒻 ℊ 𝒽 𝒾 𝒿 𝓀 𝓁 𝓂 𝓃 ℴ 𝓅 𝓆 𝓇 𝓈 𝓉 𝓊 𝓋 𝓌 𝓍 𝓎 𝓏
Bold \mathcal{...} 𝓐 𝓑 𝓒 𝓓 𝓔 𝓕 𝓖 𝓗 𝓘 𝓙 𝓚 𝓛 𝓜 𝓝 𝓞 𝓟 𝓠 𝓡 𝓢 𝓣 𝓤 𝓥 𝓦 𝓧 𝓨 𝓩
𝓪 𝓫 𝓬 𝓭 𝓮 𝓯 𝓰 𝓱 𝓲 𝓳 𝓴 𝓵 𝓶 𝓷 𝓸 𝓹 𝓺 𝓻 𝓼 𝓽 𝓾 𝓿 𝔀 𝔁 𝔂 𝔃
Fraktur
\mathfrak{...} 𝔄 𝔅 ℭ 𝔇 𝔈 𝔉 𝔊 ℌ ℑ 𝔍 𝔎 𝔏 𝔐 𝔑 𝔒 𝔓 𝔔 ℜ 𝔖 𝔗 𝔘 𝔙 𝔚 𝔛 𝔜 ℨ
𝔞 𝔟 𝔠 𝔡 𝔢 𝔣 𝔤 𝔥 𝔦 𝔧 𝔨 𝔩 𝔪 𝔫 𝔬 𝔭 𝔮 𝔯 𝔰 𝔱 𝔲 𝔳 𝔴 𝔵 𝔶 𝔷
Bold \boldsymbol{\mathfrak{...}} 𝕬 𝕭 𝕮 𝕯 𝕰 𝕱 𝕲 𝕳 𝕴 𝕵 𝕶 𝕷 𝕸 𝕹 𝕺 𝕻 𝕼 𝕽 𝕾 𝕿 𝖀 𝖁 𝖂 𝖃 𝖄 𝖅
𝖆 𝖇 𝖈 𝖉 𝖊 𝖋 𝖌 𝖍 𝖎 𝖏𝖐 𝖑 𝖒 𝖓 𝖔 𝖕 𝖖 𝖗 𝖘 𝖙 𝖚 𝖛 𝖜 𝖝 𝖞 𝖟
Mono-space

𝙰 𝙱 𝙲 𝙳 𝙴 𝙵 𝙶 𝙷 𝙸 𝙹 𝙺 𝙻 𝙼 𝙽 𝙾 𝙿 𝚀 𝚁 𝚂 𝚃 𝚄 𝚅 𝚆 𝚇 𝚈 𝚉

𝚊 𝚋 𝚌 𝚍 𝚎 𝚏 𝚐 𝚑 𝚒 𝚓 𝚔 𝚕 𝚖 𝚗 𝚘 𝚙 𝚚 𝚛 𝚜 𝚝 𝚞 𝚟 𝚠 𝚡 𝚢 𝚣
Greek

Α Β Γ ᴦ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Ῥ ☧ Σ Ϲ Τ Υ υ Φ Χ Ψ Ω

α β ᵝ ᵦ γ ᵞ ᵧ δ ᵟ ε ϵ ϶ ζ η Ͱ ͱ θ ϑ ϴ ᶿ ι ᶥ ℩ κ ϰ λ ᴧ μ µ ν ξ ο π ϖ ρ ῥ ῤ ϱ ϼ ᴩ ᵨ σ ς ϲ Ͻ ͻ Ͼ ͼ Ͽ ͽ τ ϒ φ ϕ χ ᵡ ᵪ ψ ᴪ ω
Italic
𝛢 𝛣 𝛤 𝛥 𝛦 𝛧 𝛨 𝛩 𝛪 𝛫 𝛬 𝛭 𝛮 𝛯 𝛰 𝛱 𝛲 𝛳 𝛴 𝛵 𝛶 𝛷 𝛸 𝛹 𝛺 𝛻

𝛼 𝛽 𝛾 𝛿 𝜕 𝜀 𝜖 𝜁 𝜂 𝜃 𝜗 𝜄 𝜅 𝜆 𝜇 𝜈 𝜉 𝜊 𝜋 𝜛 𝜌 𝜚 𝜍 𝜎 𝜏 𝜐 𝜑 𝜙 𝜒 𝜘 𝜓 𝜔
Non-Latin Italic
𝛼 𝛽 𝛤 𝛾 𝛥 𝛿 𝜀 𝜁 𝜂 𝛩 𝜃 𝛳 𝜗 𝜄 𝜅 𝜘 𝛬 𝜆 𝜇 𝜈 𝛯 𝜉 𝛱 𝜋 𝜌 𝜚 𝛴 𝜎 𝜍 𝜏 𝛶 𝜐 𝛷 𝜑 𝜙 𝜒 𝛹 𝜓 𝛺 𝜔
Bold
𝚨 𝚩 𝚪 𝚫 𝚬 𝚭 𝚮 𝚯 𝚰 𝚱 𝚲 𝚳 𝚴 𝚵 𝚶 𝚷 𝚸 𝚹 𝚺 𝚻 𝚼 𝚽 𝚾 𝚿 𝛀 𝛁

𝛂 𝛃 𝛄 𝛅 𝛛 𝛆 𝛜 𝛇 𝛈 𝛉 𝛝 𝛊 𝛋 𝛞 𝛌 𝛍 𝛎 𝛏 𝛐 𝛑 𝛡 𝛒 𝛠 𝛓 𝛔 𝛕 𝛖 𝛗 𝛟 𝛘 𝛙 𝛚
Bold Italic
𝜜 𝜝 𝜞 𝜟 𝜠 𝜡 𝜢 𝜣 𝜤 𝜥 𝜦 𝜧 𝜨 𝜩 𝜪 𝜫 𝜬 𝜭 𝜮 𝜯 𝜰 𝜱 𝜲 𝜳 𝜴 𝜵

𝜶 𝜷 𝜸 𝜹 𝝏 𝜺 𝝐 𝜻 𝜼 𝜽 𝝑 𝜾 𝜿 𝝀 𝝁 𝝂 𝝃 𝝄 𝝅 𝝕 𝝆 𝝔 𝝇 𝝈 𝝉 𝝊 𝝋 𝝓 𝝌 𝝒 𝝍 𝝎
Double-struck
ℽ ℾ ℼ ℿ ⅀

Greek Letters

Greek alphabet
Name Greek Letter Bold Italic Bold Italic Sans-Serif Bold Sans-Serif Bold Italic APL Double struck bold Misc
Alpha Α α 𝚨 𝛂 𝛢 𝛼 𝜜 𝜶 𝝖 𝝰 𝞐 𝞪 ⍺ ⍶

Beta Β β ᵝ ᵦ 𝚩 𝛃 𝛣 𝛽 𝜝 𝜷 𝝗 𝝱 𝞑 𝞫


Gamma Γ γ ᴦ ᵞ ᵧ 𝚪 𝛄 𝛤 𝛾 𝜞 𝜸 𝝘 𝝲 𝞒 𝞬
ℾ ℽ
Delta Δ δ ᵟ 𝚫 𝛅 𝛥 𝛿 𝜟 𝜹 𝝙 𝝳 𝞓 𝞭


Epsilon Ε ε ϵ ϶ 𝚬 𝛆 𝛦 𝜀 𝜠 𝜺 𝝚 𝝴 𝞔 𝞮 ⍷

Zeta Ζ ζ 𝚭 𝛇 𝛧 𝜁 𝜡 𝜻 𝝛 𝝵 𝞕 𝞯


Eta Η η Ͱ ͱ 𝚮 𝛈 𝛨 𝜂 𝜢 𝜼 𝝜 𝝶 𝞖 𝞰


Theta Θ θ ϑ ϴ ᶿ 𝚯 𝛉 𝚹 𝛝 𝛩 𝜃 𝛳 𝜗 𝜣 𝜽 𝜭 𝝑 𝝝 𝝷 𝚹 𝞋 𝞗 𝞱 𝜭 𝟅


Iota Ι ι ᶥ ℩ 𝚰 𝛊 𝛪 𝜄 𝜤 𝜾 𝝞 𝝸 𝞘 𝞲 ⍳ ⍸

Kappa Κ κ ϰ 𝚱 𝛋 𝛞 𝛫 𝜅 𝜘 𝜥 𝜿 𝝒 𝝟 𝝹 𝞌 𝞙 𝞳 𝟆


Lambda Λ λ ᴧ 𝚲 𝛌 𝛬 𝜆 𝜦 𝝀 𝝠 𝝺 𝞚 𝞴


Mu Μ μ µ 𝚳 𝛍 𝛭 𝜇 𝜧 𝝁 𝝡 𝝻 𝞛 𝞵


Nu Ν ν 𝚴 𝛎 𝛮 𝜈 𝜨 𝝂 𝝢 𝝼 𝞜 𝞶


Xi Ξ ξ 𝚵 𝛏 𝛯 𝜉 𝜩 𝝃 𝝣 𝝽 𝞝 𝞷


Omicron Ο ο 𝚶 𝛐 𝛰 𝜊 𝜪 𝝄 𝝤 𝝾 𝞞 𝞸


Pi Π π ϖ 𝚷 𝛑 𝛱 𝜋 𝜫 𝝅 𝝥 𝝿 𝞟 𝞹
ℿ ℼ ∏ ∐
Rho Ρ ρ Ῥ ῥ ῤ ϱ ϼ ᴩ ᵨ ☧ 𝚸 𝛒 𝛠 𝛲 𝜌 𝜚 𝜬 𝝆 𝝔 𝝦 𝞀 𝞎 𝞠 𝞺 𝟈 ⍴

Sigma Σ σ ς Ϲ ϲ Ͻ ͻ Ͼ ͼ Ͽ ͽ 𝚺 𝛔 𝛓 𝛴 𝜎 𝜍 𝜮 𝝈 𝝇 𝝨 𝞂 𝞁 𝞢 𝞼 𝞻
⅀ ∑
Tau Τ τ 𝚻 𝛕 𝛵 𝜏 𝜯 𝝉 𝝩 𝞃 𝞣 𝞽


Upsilon Υ υ ϒ 𝚼 𝛖 𝛶 𝜐 𝜰 𝝊 𝝪 𝞄 𝞤 𝞾


Phi Φ φ ϕ 𝚽 𝛗 𝛟 𝛷 𝜑 𝜙 𝜱 𝝋 𝝓 𝝫 𝞅 𝞍 𝞥 𝞿 𝟇


Chi Χ χᵡᵪ☧ 𝚾 𝛘 𝛸 𝜒 𝜲 𝝌 𝝬 𝞆 𝞦 𝟀


Psi Ψ ψ ᴪ 𝚿 𝛙 𝛹 𝜓 𝜳 𝝍 𝝭 𝞇 𝞧 𝟁


Omega Ω ω 𝛀 𝛚 𝛺 𝜔 𝜴 𝝎 𝝮 𝞈 𝞨 𝟂 ⍵ ⍹

See also

Unicode and LaTeX
  • List of mathematical symbols
    • List of logic symbols
    • Blackboard bold#Usage
  • Help:Displaying a formula
LaTeX
  • Help:Displaying a formula#Formatting using TeX - An extensive list of LaTeX examples.
  • Wikipedia:LaTeX symbols
Unicode
  • Lists of Mathematical operators and symbols in Unicode
    • Mathematical Operators and Supplemental Mathematical Operators
    • List of mathematical symbols
    • Miscellaneous Math Symbols: A, B, Technical
    • Arrow (symbol) and Miscellaneous Symbols and Arrows and arrow symbols
    • ISO 31-11 (Mathematical signs and symbols for use in physical sciences and technology)
    • Number Forms
    • Geometric Shapes
    • Wikipedia:Mathematical symbols
  • Mathematical Alphanumeric Symbols (Unicode block)
    • Mathematical constants and functions
    • Table of mathematical symbols by introduction date
  • List of Unicode characters
    • Letterlike Symbols
    • Unicode block
Conventions and guidelines
  • Typographical conventions and common meanings of symbols:
    • APL syntax and symbols
    • Greek letters used in mathematics, science, and engineering
    • Latin letters used in mathematics
    • List of common physics notations
    • List of letters used in mathematics and science
    • List of mathematical abbreviations
    • Mathematical notation
    • Notation in probability and statistics
    • Physical constants
    • Typographical conventions in mathematical formulae
  • Wikipedia notation and formula guidelines:
    • Wikipedia:Manual of Style/Mathematics#Mathematical conventions
    • Wikipedia:WikiProject Logic/Standards for notation
    • Help:Special characters
Other
  • Diacritic
  • Language of mathematics

Bibliography

  • Tilo Arens; Frank Hettlich; Christian Karpfinger; Ulrich Kockelkorn; Klaus Lichtenegger; Hellmuth Stachel (2011), Mathematik (in German) (2. ed.), Spektrum Akademischer Verlag, pp. 1483ff, ISBN 978-3-827-42347-4
  • Wolfgang Hackbusch (2010), Taschenbuch der Mathematik, Band 1 (in German) (3. ed.), Springer, pp. 1275ff, ISBN 978-3-835-10123-4
  • Deutsches Institut für Normung: DIN 1302: Allgemeine mathematische Zeichen und Begriffe, Beuth-Verlag, 1999.
  • Deutsches Institut für Normung: DIN 1303: Vektoren, Matrizen, Tensoren; Zeichen und Begriffe, Beuth-Verlag, 1987.
  • International Standards Organisation: DIN EN ISO 80000-2: Größen und Einheiten – Teil 2: Mathematische Zeichen für Naturwissenschaft und Technik, 2013.

Note: This article is a translation of the German Wikipedia article de:Liste mathematischer Symbole.

External links

LaTeX and Unicode
  • Symbols defined by unicode-math - Lists LaTeX and corresponding Unicode symbols
  • Unicode characters and corresponding LaTeX math mode command
LaTeX
Wikimedia Commons has media related to Mathematical symbols.
  • Scott Pakin (25 June 2020). "The Comprehensive LaTeX Symbol List" (PDF; 4,4 MB). The Comprehensive TeX Archive Network (CTAN). Retrieved 8 August 2020.
Unicode
  • Symbols defined by unicode-math
  • "Mathematical Operators – Unicode" (PDF). Retrieved 2013-07-20.
  • Lists Unicode Block "Mathematical Operators"
  • Lists Unicode Block "Supplemental Mathematical Operators"
  • Lists Unicode Block "Miscellaneous Mathematical Symbols-A"
  • Lists Unicode Block "Miscellaneous Mathematical Symbols-B"
  • Lists Unicode Block "Mathematical Alphanumeric Symbols"

  • v
  • t
  • e
Mathematical notation, symbols, and formulas
Categories:
  • Mathematical notation
  • Mathematics-related lists
  • Mathematical symbols
  • Mathematical tables
  • Mathematical logic
  • Lists of symbols

Navigation menu

  • Not logged in
  • Talk
  • Contributions
  • Create account
  • Log in
  • Article
  • Talk
  • Read
  • Edit
  • View history

  • Main page
  • Contents
  • Current events
  • Random article
  • About Wikipedia
  • Contact us
  • Donate
  • Help
  • Learn to edit
  • Community portal
  • Recent changes
  • Upload file
  • What links here
  • Related changes
  • Special pages
  • Permanent link
  • Page information
  • Cite this page
  • Wikidata item
  • Download as PDF
  • Printable version
  • Wikimedia Commons
  • العربية
Edit links
  • This page was last edited on 27 March 2022, at 17:52 (UTC).
  • Text is available under the Creative Commons Attribution-ShareAlike License 3.0; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

 

Writer: Karen Placek at March 28, 2022
Karen Placek
Presents, a Life with a Plan. My name is Karen Anastasia Placek, I am the author of this Google Blog. This is the story of my journey, a quest to understanding more than myself. The title of my first blog delivered more than a million views!! The title is its work as "The Secret of the Universe is Choice!; know decision" will be the next global slogan. Placed on T-shirts, Jackets, Sweatshirts, it really doesn't matter, 'cause a picture with my slogan is worth more than a thousand words, it's worth??.......Know Conversation!!!

No comments:

Post a Comment

Newer Post Older Post Home
Subscribe to: Post Comments (Atom)

An Independent Mind, Knot Logic

An Independent Mind, Knot Logic

Title Hello!!!

 Cantore Arithmetic is able to state word kidnapping equated words last names Malcolm and Rodgers, first name Mary and Louise.  So curious t...

Karen A. Placek, aka Karen Placek, K.A.P., KAP

My photo
Karen Placek
Presents, a Life with a Plan. My name is Karen Anastasia Placek, I am the author of this Google Blog. This is the story of my journey, a quest to understanding more than myself. The title of my first blog delivered more than a million views!! The title is its work as "The Secret of the Universe is Choice!; know decision" will be the next global slogan. Placed on T-shirts, Jackets, Sweatshirts, it really doesn't matter, 'cause a picture with my slogan is worth more than a thousand words, it's worth??.......Know Conversation!!!
View my complete profile

Know Decision of the Public: Popular Posts!!

  • Pi Solved!!
    2 behind the x (times sign)    divided multiplied and ⤵                                                                 ↪  that...
  • The Hare Of Matching Funds? From Page To Deposit Of Language And Shown Google Inc. Has Delivered More Than Vocal Squeaks That 'The News' Has Left Trails That Have Marked Pathways Brain With Chalkboard Train Of Nails On The Tube, It's The Change, A True Blue, An Achievable, A Choice!!
    It began on a mid of night News court.  A freeway with flames shot the scene to Kaiser.  In such the heat of each ember ran into the touc...
  • (no title)
    Bay Bridge traffic is so terrible that as a native San Franciscan I have found it very difficult to both come home and at an earlier tim...
  • An Am You Let Inside = Today The 1st Of December 2017 On Ancient Aliens 'Decoding The Cosmic Egg' On DISH Channel 120 However It's The Optics That Rib The Bisque To Simply Ask What Is That Mist?
    Should I voe an egg to the hatch of it's clutch than the via is of the Turtle at it's bae'd, of that is the batch of Hu...
  • Charles Darwin Wrote The 'Missing Link' Found And Stephen Hawking Said He Believed In 'The Theory Of Everything' And Yet Today I Will Quote "A man who dares to waste one hour of time has not discovered the value of life."
    As the humpback whale has been studied for it's majestic manner it is not said how that whale came through our evolutionary reason t...
  • Isaac Emmanuel (pronounced Eat^sock E!^Manual) And My Mother Never Had A Christmas Without One Another, Our Drawing Room And As The Canvas Their Love of Wrote To Word Of Spontaneous Counted As The Hebrew And My Mom And Isaac Emmanuel Spoke In As 'The Paints'!!
    USA to Russian Tsar: Stop Your Cruel Oppression of the Jews,  1904. Chromolithograph. https://commons.wikimedia.org/wiki/File:190...
  • Eye Witness Method Too
    This is an image of George Eastman and the logo for Kodak.  To say that George Eastman had a moment of genesis in the adventure and popul...
  • https://www.youtube.com/watch?v=09LTT0xwdfw
     1.) 2.) 3.) 4.) Yeti From Wikipedia, the free encyclopedia Jump to navigation Jump to search "Abominab...
  • The History Channel is owned by Disney–ABC Television Group division of the Walt Disney Company?
    THE HUNT FOR THE ZODIAC KILLER NEW EPISODES TUESDAYS AT 10/9C http://www.history.com/shows/the-hunt-for-the-zodiac-killer https://e...
  • Quote A Quote At The Chance Slur's Sneeze
    Oh how Tonga must yearn from lack of recognition, the statement in start to a compliment by starch, such grace must inhabit ...

About Me: Karen Placek

My photo
Karen Placek
Presents, a Life with a Plan. My name is Karen Anastasia Placek, I am the author of this Google Blog. This is the story of my journey, a quest to understanding more than myself. The title of my first blog delivered more than a million views!! The title is its work as "The Secret of the Universe is Choice!; know decision" will be the next global slogan. Placed on T-shirts, Jackets, Sweatshirts, it really doesn't matter, 'cause a picture with my slogan is worth more than a thousand words, it's worth??.......Know Conversation!!!
View my complete profile

Translate

Search This Blog

Wikipedia

Search results

Stuffed Pages

  • Home
  • Math Solved
  • The Fork

My Blog List

  • The Secret of the Universe is Choice
    Al Franken With Unspoken Of Expression On The Floor!!
  • Just Call Me Care In
    Sum Wares In Time!!
  • The Impossible Is The Possible Happening
    You Who!! Some Names Have Been Changed To Protect The Innocent!!!!
  • Do You Want To Build A Planet Today?
    It's A^More^Eh!! Posted by Karen A. Placek at 5:11 AM Time stamped to Date Stamped as January 16, 2017
  • The Balance Of Nautical Nor Too Coal
    The Astrolabe Is A Very Ancient Astronomical Computer
  • The Secret Of The Universe Is Choice 'The Continue'
    Balance Sing The Bars Be Signed Once The Bridge Of Rags To Mined Now The Paper Cyst Tum From Sew^Duh Pop!!!!!

Search This Blog

Blog Archive

  • ►  2025 (865)
    • ►  December (12)
    • ►  November (57)
    • ►  October (51)
    • ►  September (69)
    • ►  August (72)
    • ►  July (76)
    • ►  June (91)
    • ►  May (72)
    • ►  April (92)
    • ►  March (114)
    • ►  February (93)
    • ►  January (66)
  • ►  2024 (866)
    • ►  December (85)
    • ►  November (63)
    • ►  October (76)
    • ►  September (89)
    • ►  August (111)
    • ►  July (54)
    • ►  June (79)
    • ►  May (60)
    • ►  April (47)
    • ►  March (69)
    • ►  February (71)
    • ►  January (62)
  • ►  2023 (363)
    • ►  December (76)
    • ►  November (58)
    • ►  October (70)
    • ►  September (61)
    • ►  August (26)
    • ►  July (33)
    • ►  June (7)
    • ►  May (20)
    • ►  April (5)
    • ►  March (3)
    • ►  February (3)
    • ►  January (1)
  • ▼  2022 (62)
    • ►  December (2)
    • ►  November (6)
    • ►  October (4)
    • ►  September (5)
    • ►  August (4)
    • ►  July (1)
    • ►  June (4)
    • ►  May (7)
    • ►  April (9)
    • ▼  March (11)
      • The Impossible Is The Possible Waiting To Happen
      • Boom
      • From Mice To Men The Claw Of What Is A Mouse
      • The Cross
      • Fly Like An Eagle
      • What's In Your Wall It
      • Is It Possible To Be True
      • Me And My Shadow Is Not The Shade Of A Number: Th...
      • The Cosmic Egg Is A Skull
      • Arithmetic Ball Bearing
      • Tilt The E To The Three M And Column!!
    • ►  February (2)
    • ►  January (7)
  • ►  2021 (63)
    • ►  December (5)
    • ►  November (7)
    • ►  October (4)
    • ►  September (14)
    • ►  August (4)
    • ►  July (3)
    • ►  June (7)
    • ►  May (5)
    • ►  April (3)
    • ►  February (4)
    • ►  January (7)
  • ►  2020 (44)
    • ►  December (9)
    • ►  November (6)
    • ►  September (6)
    • ►  August (6)
    • ►  July (4)
    • ►  May (8)
    • ►  April (3)
    • ►  March (1)
    • ►  January (1)
  • ►  2019 (96)
    • ►  November (1)
    • ►  October (3)
    • ►  July (3)
    • ►  May (7)
    • ►  April (21)
    • ►  March (31)
    • ►  February (21)
    • ►  January (9)
  • ►  2018 (336)
    • ►  December (30)
    • ►  November (53)
    • ►  October (52)
    • ►  September (27)
    • ►  August (19)
    • ►  June (94)
    • ►  May (17)
    • ►  April (31)
    • ►  March (3)
    • ►  February (2)
    • ►  January (8)
  • ►  2017 (95)
    • ►  December (52)
    • ►  November (37)
    • ►  October (6)

Report Abuse

A Good Ride

A Good Ride
  • The Fork

Search This Blog

Simple theme. Powered by Blogger.