An Independent Mind, Knot Logic

The Secret of the Universe is Choice: Know Decision; http://thesecretoftheuniversechoice.blogspot.com/ (https://beingsandrice.blogspot.com/)

Hi, where are you from?

My photo
Karen Placek
Presents, a Life with a Plan. My name is Karen Anastasia Placek, I am the author of this Google Blog. This is the story of my journey, a quest to understanding more than myself. The title of my first blog delivered more than a million views!! The title is its work as "The Secret of the Universe is Choice!; know decision" will be the next global slogan. Placed on T-shirts, Jackets, Sweatshirts, it really doesn't matter, 'cause a picture with my slogan is worth more than a thousand words, it's worth??.......Know Conversation!!!
View my complete profile

Monday, June 28, 2021

Pungent

 


 

 

The graph to a grip is to begin to comprehend the distance to the height versus the depth to what is impact.  As this is just a paper to the grip it will take real computers to manage the actual.  On such a basis of the grip computer technology will manage this essay in dictation to re-introduce a map to graph beginning the process of "size matters".

 

As the posture of the last five posts gains to the thorough way of "How" to the answer of  "space" to the engine at "Scene" it remains to the Earth and all the conjecture. The anxious to the reservation it is to be known as a Pyramid due to the math?  What is the caliber of reservation as the Grand Canyon shows erosion, the mountains tell on it for comparison and the valley is it's bridge?  What toll?


To ground the mathematics and open the venue for instruction would the world not be an oyster and the seat the pearl?  As such should modern day language verse to the instructive detail in tradition of known than following a bar to the note would manage for this simple delay, well worth the detail!!  What is the infinity sign, it is a flat world.  Or, it is an eight on the flat of that side world and not on the tilt. Or, is it two mandala's?




Should the map of the Pyramids in Egypt be broken down to build a wall than would that wall follow an above ground Grand Canyon to manage the conjecture?  In addition, would that same idea hinge to Peru and would the grounds detail with the unexplained; i.e. the walls, both with display and with blocks to follow the oldest lines in grounded or showing some sorted  blast zones, is it possible?

New Math At Ground Not Square

One, Two, Three,  

NM=New mathematics 

Gravity + Pi + Fibonacci = Cantore: C-prompt/New Math  

Nazca Lay Lines 

 


 

Conjecture

From Wikipedia, the free encyclopedia
Jump to navigation Jump to search
For text reconstruction, see Conjecture (textual criticism).
The real part (red) and imaginary part (blue) of the Riemann zeta function along the critical line Re(s) = 1/2. The first non-trivial zeros can be seen at Im(s) = ±14.135, ±21.022 and ±25.011. The Riemann hypothesis, a famous conjecture, says that all non-trivial zeros of the zeta function lie along the critical line.

In mathematics, a conjecture is a conclusion or a proposition which is suspected to be true due to preliminary supporting evidence, but for which no proof or disproof has yet been found.[1][2][3][4] Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them.[5]

Contents

  • 1 Important examples
    • 1.1 Fermat's Last Theorem
    • 1.2 Four color theorem
    • 1.3 Hauptvermutung
    • 1.4 Weil conjectures
    • 1.5 Poincaré conjecture
    • 1.6 Riemann hypothesis
    • 1.7 P versus NP problem
    • 1.8 Other conjectures
  • 2 Resolution of conjectures
    • 2.1 Proof
    • 2.2 Disproof
    • 2.3 Independent conjectures
  • 3 Conditional proofs
  • 4 In other sciences
  • 5 See also
  • 6 References
  • 7 External links

Important examples

Fermat's Last Theorem

Main article: Fermat's Last Theorem

In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a {\displaystyle a} a, b {\displaystyle b} b, and c {\displaystyle c} c can satisfy the equation a n + b n = c n {\displaystyle a^{n}+b^{n}=c^{n}} a^{n}+b^{n}=c^{n} for any integer value of n {\displaystyle n} n greater than two.

This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of Arithmetica, where he claimed that he had a proof that was too large to fit in the margin.[6] The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by mathematicians. The unsolved problem stimulated the development of algebraic number theory in the 19th century, and the proof of the modularity theorem in the 20th century. It is among the most notable theorems in the history of mathematics, and prior to its proof it was in the Guinness Book of World Records for "most difficult mathematical problems".[7]

Four color theorem

Main article: Four color theorem
A four-coloring of a map of the states of the United States (ignoring lakes).

In mathematics, the four color theorem, or the four color map theorem, states that given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map—so that no two adjacent regions have the same color. Two regions are called adjacent if they share a common boundary that is not a corner, where corners are the points shared by three or more regions.[8] For example, in the map of the United States of America, Utah and Arizona are adjacent, but Utah and New Mexico, which only share a point that also belongs to Arizona and Colorado, are not.

Möbius mentioned the problem in his lectures as early as 1840.[9] The conjecture was first proposed on October 23, 1852[10] when Francis Guthrie, while trying to color the map of countries of England, noticed that only four different colors were needed. The five color theorem, which has a short elementary proof, states that five colors suffice to color a map and was proven in the late 19th century;[11] however, proving that four colors suffice turned out to be significantly harder. A number of false proofs and false counterexamples have appeared since the first statement of the four color theorem in 1852.

The four color theorem was ultimately proven in 1976 by Kenneth Appel and Wolfgang Haken. It was the first major theorem to be proved using a computer. Appel and Haken's approach started by showing that there is a particular set of 1,936 maps, each of which cannot be part of a smallest-sized counterexample to the four color theorem (i.e., if they did appear, one could make a smaller counter-example). Appel and Haken used a special-purpose computer program to confirm that each of these maps had this property. Additionally, any map that could potentially be a counterexample must have a portion that looks like one of these 1,936 maps. Showing this with hundreds of pages of hand analysis, Appel and Haken concluded that no smallest counterexample exists because any must contain, yet do not contain, one of these 1,936 maps. This contradiction means there are no counterexamples at all and that the theorem is therefore true. Initially, their proof was not accepted by mathematicians at all because the computer-assisted proof was infeasible for a human to check by hand.[12] However, the proof has since then gained wider acceptance, although doubts still remain.[13]

Hauptvermutung

Main article: Hauptvermutung

The Hauptvermutung (German for main conjecture) of geometric topology is the conjecture that any two triangulations of a triangulable space have a common refinement, a single triangulation that is a subdivision of both of them. It was originally formulated in 1908, by Steinitz and Tietze.[14]

This conjecture is now known to be false. The non-manifold version was disproved by John Milnor[15] in 1961 using Reidemeister torsion.

The manifold version is true in dimensions m ≤ 3. The cases m = 2 and 3 were proved by Tibor Radó and Edwin E. Moise[16] in the 1920s and 1950s, respectively.

Weil conjectures

Main article: Weil conjectures

In mathematics, the Weil conjectures were some highly influential proposals by André Weil (1949) on the generating functions (known as local zeta-functions) derived from counting the number of points on algebraic varieties over finite fields.

A variety V over a finite field with q elements has a finite number of rational points, as well as points over every finite field with qk elements containing that field. The generating function has coefficients derived from the numbers Nk of points over the (essentially unique) field with qk elements.

Weil conjectured that such zeta-functions should be rational functions, should satisfy a form of functional equation, and should have their zeroes in restricted places. The last two parts were quite consciously modeled on the Riemann zeta function and Riemann hypothesis. The rationality was proved by Dwork (1960), the functional equation by Grothendieck (1965), and the analogue of the Riemann hypothesis was proved by Deligne (1974)

Poincaré conjecture

Main article: Poincaré conjecture

In mathematics, the Poincaré conjecture is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space. The conjecture states that:

Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

An equivalent form of the conjecture involves a coarser form of equivalence than homeomorphism called homotopy equivalence: if a 3-manifold is homotopy equivalent to the 3-sphere, then it is necessarily homeomorphic to it.

Originally conjectured by Henri Poincaré, the theorem concerns a space that locally looks like ordinary three-dimensional space but is connected, finite in size, and lacks any boundary (a closed 3-manifold). The Poincaré conjecture claims that if such a space has the additional property that each loop in the space can be continuously tightened to a point, then it is necessarily a three-dimensional sphere. An analogous result has been known in higher dimensions for some time.

After nearly a century of effort by mathematicians, Grigori Perelman presented a proof of the conjecture in three papers made available in 2002 and 2003 on arXiv. The proof followed on from the program of Richard S. Hamilton to use the Ricci flow to attempt to solve the problem. Hamilton later introduced a modification of the standard Ricci flow, called Ricci flow with surgery to systematically excise singular regions as they develop, in a controlled way, but was unable to prove this method "converged" in three dimensions.[17] Perelman completed this portion of the proof. Several teams of mathematicians have verified that Perelman's proof is correct.

The Poincaré conjecture, before being proven, was one of the most important open questions in topology.

Riemann hypothesis

Main article: Riemann hypothesis

In mathematics, the Riemann hypothesis, proposed by Bernhard Riemann (1859), is a conjecture that the non-trivial zeros of the Riemann zeta function all have real part 1/2. The name is also used for some closely related analogues, such as the Riemann hypothesis for curves over finite fields.

The Riemann hypothesis implies results about the distribution of prime numbers. Along with suitable generalizations, some mathematicians consider it the most important unresolved problem in pure mathematics.[18] The Riemann hypothesis, along with the Goldbach conjecture, is part of Hilbert's eighth problem in David Hilbert's list of 23 unsolved problems; it is also one of the Clay Mathematics Institute Millennium Prize Problems.

P versus NP problem

Main article: P versus NP problem

The P versus NP problem is a major unsolved problem in computer science. Informally, it asks whether every problem whose solution can be quickly verified by a computer can also be quickly solved by a computer; it is widely conjectured that the answer is no. It was essentially first mentioned in a 1956 letter written by Kurt Gödel to John von Neumann. Gödel asked whether a certain NP-complete problem could be solved in quadratic or linear time.[19] The precise statement of the P=NP problem was introduced in 1971 by Stephen Cook in his seminal paper "The complexity of theorem proving procedures"[20] and is considered by many to be the most important open problem in the field.[21] It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution.

Other conjectures

  • Goldbach's conjecture
  • The twin prime conjecture
  • The Collatz conjecture
  • The Manin conjecture
  • The Maldacena conjecture
  • The Euler conjecture, proposed by Euler in the 18th century but for which counterexamples for a number of exponents (starting with n=4) were found beginning in the mid 20th century
  • The Hardy-Littlewood conjectures are a pair of conjectures concerning the distribution of prime numbers, the first of which expands upon the aforementioned twin prime conjecture. Neither one has either been proven or disproven, but it has been proven that both cannot simultaneously be true (i.e., at least one must be false). It has not been proven which one is false, but it is widely believed that the first conjecture is true and the second one is false.[22]
  • The Langlands program[23] is a far-reaching web of these ideas of 'unifying conjectures' that link different subfields of mathematics (e.g. between number theory and representation theory of Lie groups). Some of these conjectures have since been proved.

Resolution of conjectures

Proof

Formal mathematics is based on provable truth. In mathematics, any number of cases supporting a conjecture, no matter how large, is insufficient for establishing the conjecture's veracity, since a single counterexample could immediately bring down the conjecture. Mathematical journals sometimes publish the minor results of research teams having extended the search for a counterexample farther than previously done. For instance, the Collatz conjecture, which concerns whether or not certain sequences of integers terminate, has been tested for all integers up to 1.2 × 1012 (over a trillion). However, the failure to find a counterexample after extensive search does not constitute a proof that no counterexample exists, nor that the conjecture is true—because the conjecture might be false but with a very large minimal counterexample.

Instead, a conjecture is considered proven only when it has been shown that it is logically impossible for it to be false. There are various methods of doing so; see methods of mathematical proof for more details.

One method of proof, applicable when there are only a finite number of cases that could lead to counterexamples, is known as "brute force": in this approach, all possible cases are considered and shown not to give counterexamples. In some occasions, the number of cases is quite large, in which case a brute-force proof may require as a practical matter the use of a computer algorithm to check all the cases. For example, the validity of the 1976 and 1997 brute-force proofs of the four color theorem by computer was initially doubted, but was eventually confirmed in 2005 by theorem-proving software.

When a conjecture has been proven, it is no longer a conjecture but a theorem. Many important theorems were once conjectures, such as the Geometrization theorem (which resolved the Poincaré conjecture), Fermat's Last Theorem, and others.

Disproof

Conjectures disproven through counterexample are sometimes referred to as false conjectures (cf. the Pólya conjecture and Euler's sum of powers conjecture). In the case of the latter, the first counterexample found for the n=4 case involved numbers in the millions, although it has been subsequently found that the minimal counterexample is actually smaller.

Independent conjectures

Not every conjecture ends up being proven true or false. The continuum hypothesis, which tries to ascertain the relative cardinality of certain infinite sets, was eventually shown to be independent from the generally accepted set of Zermelo–Fraenkel axioms of set theory. It is therefore possible to adopt this statement, or its negation, as a new axiom in a consistent manner (much as Euclid's parallel postulate can be taken either as true or false in an axiomatic system for geometry).

In this case, if a proof uses this statement, researchers will often look for a new proof that doesn't require the hypothesis (in the same way that it is desirable that statements in Euclidean geometry be proved using only the axioms of neutral geometry, i.e. without the parallel postulate). The one major exception to this in practice is the axiom of choice, as the majority of researchers usually do not worry whether a result requires it—unless they are studying this axiom in particular.

Conditional proofs

Sometimes, a conjecture is called a hypothesis when it is used frequently and repeatedly as an assumption in proofs of other results.[1] For example, the Riemann hypothesis is a conjecture from number theory that — amongst other things — makes predictions about the distribution of prime numbers. Few number theorists doubt that the Riemann hypothesis is true. In fact, in anticipation of its eventual proof, some have even proceeded to develop further proofs which are contingent on the truth of this conjecture. These are called conditional proofs: the conjectures assumed appear in the hypotheses of the theorem, for the time being.

These "proofs", however, would fall apart if it turned out that the hypothesis was false, so there is considerable interest in verifying the truth or falsity of conjectures of this type.

In other sciences

Karl Popper pioneered the use of the term "conjecture" in scientific philosophy.[24] Conjecture is related to hypothesis, which in science refers to a testable conjecture.

See also

  • Bold hypothesis
  • Hypotheticals
  • List of conjectures

References


  • "The Definitive Glossary of Higher Mathematical Jargon — Conjecture". Math Vault. 2019-08-01. Retrieved 2019-11-12.
    1. Popper, Karl (2004). Conjectures and refutations : the growth of scientific knowledge. London: Routledge. ISBN 0-415-28594-1.

    External links

    Look up conjecture in Wiktionary, the free dictionary.
    • Media related to Conjectures at Wikimedia Commons
    • Open Problem Garden
    • Unsolved Problems web site
    • Nuvola apps edu mathematics blue-p.svgMathematics portal
    • Nuvola apps kalzium.svgScience portal
    Categories:
    • Conjectures
    • Concepts in the philosophy of science
    • Statements
    • Mathematical terminology

    Navigation menu

    • Not logged in
    • Talk
    • Contributions
    • Create account
    • Log in
    • Article
    • Talk
    • Read
    • Edit
    • View history

    • Main page
    • Contents
    • Current events
    • Random article
    • About Wikipedia
    • Contact us
    • Donate

    Contribute

    • Help
    • Learn to edit
    • Community portal
    • Recent changes
    • Upload file

    Tools

    • What links here
    • Related changes
    • Special pages
    • Permanent link
    • Page information
    • Cite this page
    • Wikidata item

    Print/export

    • Download as PDF
    • Printable version

    Languages

    • العربية
    • Deutsch
    • Español
    • Français
    • 한국어
    • हिन्दी
    • Italiano
    • Русский
    • 中文
    Edit links
    • This page was last edited on 19 June 2021, at 12:57 (UTC).
    • Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

  • "Definition of CONJECTURE". www.merriam-webster.com. Retrieved 2019-11-12.

  • Oxford Dictionary of English (2010 ed.).

  • Schwartz, JL (1995). Shuttling between the particular and the general: reflections on the role of conjecture and hypothesis in the generation of knowledge in science and mathematics. p. 93. ISBN 9780195115772.

  • Weisstein, Eric W. "Fermat's Last Theorem". mathworld.wolfram.com. Retrieved 2019-11-12.

  • Ore, Oystein (1988) [1948], Number Theory and Its History, Dover, pp. 203–204, ISBN 978-0-486-65620-5

  • "Science and Technology". The Guinness Book of World Records. Guinness Publishing Ltd. 1995.

  • Georges Gonthier (December 2008). "Formal Proof—The Four-Color Theorem". Notices of the AMS. 55 (11): 1382–1393. From this paper: Definitions: A planar map is a set of pairwise disjoint subsets of the plane, called regions. A simple map is one whose regions are connected open sets. Two regions of a map are adjacent if their respective closures have a common point that is not a corner of the map. A point is a corner of a map if and only if it belongs to the closures of at least three regions. Theorem: The regions of any simple planar map can be colored with only four colors, in such a way that any two adjacent regions have different colors.

  • W. W. Rouse Ball (1960) The Four Color Theorem, in Mathematical Recreations and Essays, Macmillan, New York, pp 222-232.

  • Donald MacKenzie, Mechanizing Proof: Computing, Risk, and Trust (MIT Press, 2004) p103

  • Heawood, P. J. (1890). "Map-Colour Theorems". Quarterly Journal of Mathematics. Oxford. 24: 332–338.

  • Swart, E. R. (1980). "The Philosophical Implications of the Four-Color Problem". The American Mathematical Monthly. 87 (9): 697–702. doi:10.2307/2321855. ISSN 0002-9890. JSTOR 2321855.

  • Wilson, Robin (2014). Four colors suffice : how the map problem was solved (Revised color ed.). Princeton, New Jersey: Princeton University Press. pp. 216–222. ISBN 9780691158228. OCLC 847985591.

  • "Triangulation and the Hauptvermutung". www.maths.ed.ac.uk. Retrieved 2019-11-12.

  • Milnor, John W. (1961). "Two complexes which are homeomorphic but combinatorially distinct". Annals of Mathematics. 74 (2): 575–590. doi:10.2307/1970299. JSTOR 1970299. MR 0133127.

  • Moise, Edwin E. (1977). Geometric Topology in Dimensions 2 and 3. New York: New York : Springer-Verlag. ISBN 978-0-387-90220-3.

  • Hamilton, Richard S. (1997). "Four-manifolds with positive isotropic curvature". Communications in Analysis and Geometry. 5 (1): 1–92. doi:10.4310/CAG.1997.v5.n1.a1. MR 1456308. Zbl 0892.53018.

  • Bombieri, Enrico (2000). "The Riemann Hypothesis – official problem description" (PDF). Clay Mathematics Institute. Retrieved 2019-11-12.

  • Juris Hartmanis 1989, Gödel, von Neumann, and the P = NP problem, Bulletin of the European Association for Theoretical Computer Science, vol. 38, pp. 101–107

  • Cook, Stephen (1971). "The complexity of theorem proving procedures". Proceedings of the Third Annual ACM Symposium on Theory of Computing. pp. 151–158.

  • Lance Fortnow, The status of the P versus NP problem, Communications of the ACM 52 (2009), no. 9, pp. 78–86. doi:10.1145/1562164.1562186

  • Richards, Ian (1974). "On the Incompatibility of Two Conjectures Concerning Primes". Bull. Amer. Math. Soc. 80: 419–438. doi:10.1090/S0002-9904-1974-13434-8.

  • Langlands, Robert (1967), Letter to Prof. Weil

  •  

    Writer: Karen Placek at June 28, 2021
    Karen Placek
    Presents, a Life with a Plan. My name is Karen Anastasia Placek, I am the author of this Google Blog. This is the story of my journey, a quest to understanding more than myself. The title of my first blog delivered more than a million views!! The title is its work as "The Secret of the Universe is Choice!; know decision" will be the next global slogan. Placed on T-shirts, Jackets, Sweatshirts, it really doesn't matter, 'cause a picture with my slogan is worth more than a thousand words, it's worth??.......Know Conversation!!!

    No comments:

    Post a Comment

    Newer Post Older Post Home
    Subscribe to: Post Comments (Atom)

    An Independent Mind, Knot Logic

    An Independent Mind, Knot Logic

    Title Hello!!!

     Cantore Arithmetic is able to state word kidnapping equated words last names Malcolm and Rodgers, first name Mary and Louise.  So curious t...

    Karen A. Placek, aka Karen Placek, K.A.P., KAP

    My photo
    Karen Placek
    Presents, a Life with a Plan. My name is Karen Anastasia Placek, I am the author of this Google Blog. This is the story of my journey, a quest to understanding more than myself. The title of my first blog delivered more than a million views!! The title is its work as "The Secret of the Universe is Choice!; know decision" will be the next global slogan. Placed on T-shirts, Jackets, Sweatshirts, it really doesn't matter, 'cause a picture with my slogan is worth more than a thousand words, it's worth??.......Know Conversation!!!
    View my complete profile

    Know Decision of the Public: Popular Posts!!

    • Pi Solved!!
      2 behind the x (times sign)    divided multiplied and ⤵                                                                 ↪  that...
    • The Hare Of Matching Funds? From Page To Deposit Of Language And Shown Google Inc. Has Delivered More Than Vocal Squeaks That 'The News' Has Left Trails That Have Marked Pathways Brain With Chalkboard Train Of Nails On The Tube, It's The Change, A True Blue, An Achievable, A Choice!!
      It began on a mid of night News court.  A freeway with flames shot the scene to Kaiser.  In such the heat of each ember ran into the touc...
    • (no title)
      Bay Bridge traffic is so terrible that as a native San Franciscan I have found it very difficult to both come home and at an earlier tim...
    • An Am You Let Inside = Today The 1st Of December 2017 On Ancient Aliens 'Decoding The Cosmic Egg' On DISH Channel 120 However It's The Optics That Rib The Bisque To Simply Ask What Is That Mist?
      Should I voe an egg to the hatch of it's clutch than the via is of the Turtle at it's bae'd, of that is the batch of Hu...
    • Charles Darwin Wrote The 'Missing Link' Found And Stephen Hawking Said He Believed In 'The Theory Of Everything' And Yet Today I Will Quote "A man who dares to waste one hour of time has not discovered the value of life."
      As the humpback whale has been studied for it's majestic manner it is not said how that whale came through our evolutionary reason t...
    • Isaac Emmanuel (pronounced Eat^sock E!^Manual) And My Mother Never Had A Christmas Without One Another, Our Drawing Room And As The Canvas Their Love of Wrote To Word Of Spontaneous Counted As The Hebrew And My Mom And Isaac Emmanuel Spoke In As 'The Paints'!!
      USA to Russian Tsar: Stop Your Cruel Oppression of the Jews,  1904. Chromolithograph. https://commons.wikimedia.org/wiki/File:190...
    • Eye Witness Method Too
      This is an image of George Eastman and the logo for Kodak.  To say that George Eastman had a moment of genesis in the adventure and popul...
    • https://www.youtube.com/watch?v=09LTT0xwdfw
       1.) 2.) 3.) 4.) Yeti From Wikipedia, the free encyclopedia Jump to navigation Jump to search "Abominab...
    • The History Channel is owned by Disney–ABC Television Group division of the Walt Disney Company?
      THE HUNT FOR THE ZODIAC KILLER NEW EPISODES TUESDAYS AT 10/9C http://www.history.com/shows/the-hunt-for-the-zodiac-killer https://e...
    • Quote A Quote At The Chance Slur's Sneeze
      Oh how Tonga must yearn from lack of recognition, the statement in start to a compliment by starch, such grace must inhabit ...

    About Me: Karen Placek

    My photo
    Karen Placek
    Presents, a Life with a Plan. My name is Karen Anastasia Placek, I am the author of this Google Blog. This is the story of my journey, a quest to understanding more than myself. The title of my first blog delivered more than a million views!! The title is its work as "The Secret of the Universe is Choice!; know decision" will be the next global slogan. Placed on T-shirts, Jackets, Sweatshirts, it really doesn't matter, 'cause a picture with my slogan is worth more than a thousand words, it's worth??.......Know Conversation!!!
    View my complete profile

    Translate

    Search This Blog

    Wikipedia

    Search results

    Stuffed Pages

    • Home
    • Math Solved
    • The Fork

    My Blog List

    • The Secret of the Universe is Choice
      Al Franken With Unspoken Of Expression On The Floor!!
    • Just Call Me Care In
      Sum Wares In Time!!
    • The Impossible Is The Possible Happening
      You Who!! Some Names Have Been Changed To Protect The Innocent!!!!
    • Do You Want To Build A Planet Today?
      It's A^More^Eh!! Posted by Karen A. Placek at 5:11 AM Time stamped to Date Stamped as January 16, 2017
    • The Balance Of Nautical Nor Too Coal
      The Astrolabe Is A Very Ancient Astronomical Computer
    • The Secret Of The Universe Is Choice 'The Continue'
      Balance Sing The Bars Be Signed Once The Bridge Of Rags To Mined Now The Paper Cyst Tum From Sew^Duh Pop!!!!!

    Search This Blog

    Blog Archive

    • ►  2025 (865)
      • ►  December (12)
      • ►  November (57)
      • ►  October (51)
      • ►  September (69)
      • ►  August (72)
      • ►  July (76)
      • ►  June (91)
      • ►  May (72)
      • ►  April (92)
      • ►  March (114)
      • ►  February (93)
      • ►  January (66)
    • ►  2024 (866)
      • ►  December (85)
      • ►  November (63)
      • ►  October (76)
      • ►  September (89)
      • ►  August (111)
      • ►  July (54)
      • ►  June (79)
      • ►  May (60)
      • ►  April (47)
      • ►  March (69)
      • ►  February (71)
      • ►  January (62)
    • ►  2023 (363)
      • ►  December (76)
      • ►  November (58)
      • ►  October (70)
      • ►  September (61)
      • ►  August (26)
      • ►  July (33)
      • ►  June (7)
      • ►  May (20)
      • ►  April (5)
      • ►  March (3)
      • ►  February (3)
      • ►  January (1)
    • ►  2022 (62)
      • ►  December (2)
      • ►  November (6)
      • ►  October (4)
      • ►  September (5)
      • ►  August (4)
      • ►  July (1)
      • ►  June (4)
      • ►  May (7)
      • ►  April (9)
      • ►  March (11)
      • ►  February (2)
      • ►  January (7)
    • ▼  2021 (63)
      • ►  December (5)
      • ►  November (7)
      • ►  October (4)
      • ►  September (14)
      • ►  August (4)
      • ►  July (3)
      • ▼  June (7)
        • Should A Title Bark?
        • Pungent
        • New Math At Ground Not Square
        • One, Two, Three,
        • NM=New mathematics
        • Gravity + Pi + Fibonacci = Cantore: C-prompt/New Math
        • Nazca Lay Lines
      • ►  May (5)
      • ►  April (3)
      • ►  February (4)
      • ►  January (7)
    • ►  2020 (44)
      • ►  December (9)
      • ►  November (6)
      • ►  September (6)
      • ►  August (6)
      • ►  July (4)
      • ►  May (8)
      • ►  April (3)
      • ►  March (1)
      • ►  January (1)
    • ►  2019 (96)
      • ►  November (1)
      • ►  October (3)
      • ►  July (3)
      • ►  May (7)
      • ►  April (21)
      • ►  March (31)
      • ►  February (21)
      • ►  January (9)
    • ►  2018 (336)
      • ►  December (30)
      • ►  November (53)
      • ►  October (52)
      • ►  September (27)
      • ►  August (19)
      • ►  June (94)
      • ►  May (17)
      • ►  April (31)
      • ►  March (3)
      • ►  February (2)
      • ►  January (8)
    • ►  2017 (95)
      • ►  December (52)
      • ►  November (37)
      • ►  October (6)

    Report Abuse

    A Good Ride

    A Good Ride
    • The Fork

    Search This Blog

    Simple theme. Powered by Blogger.